Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Chương 2 Phân thức đại số Giải mục 1 trang 44, 45 Toán 8 tập 1 - Cánh diều: Nêu quy tắc nhân hai phân số. Áp dụng quy tắc nhân hai phân số...

Giải mục 1 trang 44, 45 Toán 8 tập 1 - Cánh diều: Nêu quy tắc nhân hai phân số. Áp dụng quy tắc nhân hai phân số...

Hướng dẫn giải HĐ1, LT1 , HĐ2, LT2 mục 1 trang 44, 45 SGK Toán 8 tập 1 - Cánh diều Bài 3. Phép nhân - phép chia phân thức đại số. Nêu quy tắc nhân hai phân số...

Câu hỏi:

Hoạt động1

Nêu quy tắc nhân hai phân số.

Hướng dẫn giải :

Áp dụng quy tắc nhân hai phân số.

Lời giải chi tiết :

Để nhân hai phân số, ta nhân tử với tử và nhân các mẫu với nhau.


Câu hỏi:

Luyện tập1

Thực hiện phép tính:

\(a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}}\)

\(b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\)

Hướng dẫn giải :

Áp dụng quy tắc nhân hai phân thức đại số và rút gọn tích.

Lời giải chi tiết :

\(\begin{array}{l}a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}} = \\ = \dfrac{{\left( {{x^3} + 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} - 2{\rm{x}} + 1} \right).\left( {{x^2} - x + 1} \right)}}\\ = \dfrac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}.\left( {{x^2} - x + 1} \right)}} = \dfrac{{x + 1}}{{x - 1}}\end{array}\)

\(\begin{array}{l}b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\\ = \dfrac{{\left( {{x^2} - 4{\rm{x}} + 4} \right).2}}{{3{{\rm{x}}^2} - 6{\rm{x}}}} = \dfrac{{{{\left( {x - 2} \right)}^2}.2}}{{3{\rm{x}}\left( {x - 2} \right)}} = \dfrac{{2\left( {x - 2} \right)}}{{3{\rm{x}}}}\end{array}\)


Câu hỏi:

Hoạt động2

Hãy nêu các tính chất của phép nhân phân số.

Hướng dẫn giải :

Các tính chất của phân số là: giao hoán, kết hợp, phân phối phép nhân đối với phép cộng.

Lời giải chi tiết :

* Tính chất giao hoán: \(\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}\)

* Tính chất kết hợp: \(\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{e}{f} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{e}{f}} \right)\)

* Tính chất của pép nhân phân phối với phép cộng:

\(\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{e}{f}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{e}{f}\)

(\(\dfrac{a}{b};\dfrac{c}{d};\dfrac{e}{f}\) là các phân số có nghĩa)


Câu hỏi:

Luyện tập2

Thực hiện phép tính:

\(a)\dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{{x^2} - 4}}{{x + 1}}.\dfrac{{x - 2}}{{y + 6}}\)

\(b) \left(\frac{2x+1}{{x - 3}} + \frac{2x+1}{x+3}\right ) .\dfrac{{x^2 - 9}}{{2{\rm{x}} + 1}}\)

Hướng dẫn giải :

Vận dụng các tính chất của phép nhân phân thức đại số để tính toán hợp lí.

Lời giải chi tiết :

\(\begin{array}{l}a)\dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{{x^2} - 4}}{{x + 1}}.\dfrac{{x - 2}}{{y + 6}}\\ = \dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{x - 2}}{{y + 6}}.\dfrac{{{x^2} - 4}}{{x + 1}}\\ = \dfrac{{\left( {y + 6} \right).\left( {x - 2} \right).\left( {{x^2} - 4} \right)}}{{\left( {{x^2} - 4{\rm{x}} + 4} \right).\left( {y + 6} \right).\left( {x + 1} \right)}}\\ = \dfrac{{\left( {y + 6} \right).\left( {x - 2} \right).\left( {x - 2} \right)\left( {x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}.\left( {y + 6} \right).\left( {x + 1} \right)}} = \dfrac{{x + 2}}{{x + 1}}\end{array}\)

\(\begin{array}{l}b)\left(\frac{2x+1}{{x - 3}} + \frac{2x+1}{x+3}\right ) .\dfrac{{x^2 - 9}}{{2{\rm{x}} + 1}} \\ = (2x+1) \left ( \frac {1}{x-3} + \frac {1}{x+3} \right ) . \frac {(x-3)(x+3)}{2x + 1} \\ = (2x+1) \frac {x+3 + x - 3}{(x-3)(x+3)} . \frac {(x-3)(x+3)}{2x + 1} \\ = \frac {2x(2x+1)}{(x-3)(x+3)} . \frac {(x-3)(x+3)}{2x +1} \\= 2x \end{array}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK