Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Chương 1 Đa thức nhiều biến Giải mục 2 trang 8, 9, 10 Toán 8 tập 1 - Cánh diều: Biểu thức trên có bao nhiêu biến?...

Giải mục 2 trang 8, 9, 10 Toán 8 tập 1 - Cánh diều: Biểu thức trên có bao nhiêu biến?...

Trả lời HĐ 5, LT 5 , HĐ 6, LT 6, HĐ 7, LT 7 mục 2 trang 8,9,10 SGK Toán 8 tập 1 - Cánh diều Bài 1. Đơn thức nhiều biến. Đa thức nhiều biến. Cho biểu thức: ({x^2} + 2{rm{x}}y + {y^2})a) Biểu thức trên có bao nhiêu biến? b) Mỗi số hạng xuất hiện trong biểu thức có dạng như thế nào?...

Câu hỏi:

Hoạt động 5

Cho biểu thức: \({x^2} + 2{\rm{x}}y + {y^2}\)

a) Biểu thức trên có bao nhiêu biến?

b) Mỗi số hạng xuất hiện trong biểu thức có dạng như thế nào?

Hướng dẫn giải :

Đếm số biến của biến thức

Lời giải chi tiết :

a) Biểu thức: \({x^2} + 2{\rm{x}}y + {y^2}\) có 2 biến là x, y.

b) Các số hạng của biểu thức là: \({x^2};2{\rm{x}}y;{y^2}\)đều có dạng là những đơn thức.


Câu hỏi:

Luyện tập 5

Trong các biểu thức sau, biểu thức nào là đa thức: \(y + 3{\rm{z}} + \dfrac{1}{2}{y^2}z;\dfrac{{{x^2} + {y^2}}}{{x + y}}\)

Hướng dẫn giải :

Dựa vào định nghĩa đa thức để xác định biểu thức là đa thức

Lời giải chi tiết :

Biểu thức: \(y + 3{\rm{z}} + \dfrac{1}{2}{y^2}z\)là đa thức

Biểu thức: \(\dfrac{{{x^2} + {y^2}}}{{x + y}}\) không phải là đa thức


Câu hỏi:

Hoạt động 6

Cho đa thức: \(P = {x^3} + 2{{\rm{x}}^2}y + {x^2}y + 3{\rm{x}}{y^2} + {y^3}\)

Thực hiện phép cộng các đơn thức đồng dạng sao cho đa thức P không còn hai đơn thức nào đồng dạng.

Hướng dẫn giải :

Nhóm các đơn thức đồng dạng với nhau rồi thực hiện phép tính cộng.

Nhóm các đơn thức đồng dạng với nhau rồi thực hiện phép tính cộng

Lời giải chi tiết :

Ta có:

\(\begin{array}{l}P = {x^3} + 2{{\rm{x}}^2}y + {x^2}y + 3{\rm{x}}{y^2} + {y^3}\\P = {x^3} + \left( {2{{\rm{x}}^2}y + {x^2}y} \right) + 3{\rm{x}}{y^2} + {y^3}\\P = {x^3} + 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} + {y^3}\end{array}\)


Câu hỏi:

Luyện tập 6

Thu gọn đa thức: \(R = {x^3} - 2{{\rm{x}}^2}y - {x^2}y + 3{\rm{x}}{y^2} - {y^3}\)

Hướng dẫn giải :

Nhóm các đơn thức đồng dạng với nhau rồi thực hiện phép tính để đa thức R không còn tồn tại các đơn thức đồng dạng.

Lời giải chi tiết :

Ta có:

\(\begin{array}{l}R = {x^3} - 2{{\rm{x}}^2}y - {x^2}y + 3{\rm{x}}{y^2} - {y^3}\\R = {x^3} + \left( { - 2{{\rm{x}}^2}y - {x^2}y} \right) + 3{\rm{x}}{y^2} - {y^3}\\R = {x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}\end{array}\)


Câu hỏi:

Hoạt động 7

Cho đa thức: \(P = {x^2} - {y^2}\). Đa thức P được xác định bằng biểu thức nào? Tính giá trị của P tại x = 1; y = 2

Hướng dẫn giải :

Thay các giá trị đã cho của biến vào biểu thức rồi thực hiện phép tính

Lời giải chi tiết :

Đa thức P được xác định bằng biểu thức: \({x^2} - {y^2}\)

Thay x = 1; y = 2 vào đa thức P ta được:

\(P = {1^2} - {2^2} = 1 - 4 = -3\)

Vậy đa thức P = -3 tại x = 1; y=2


Câu hỏi:

Luyện tập 7

Tính giá trị của đa thức: \(Q = {x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}\) tại x = 2; y = 1

Hướng dẫn giải :

Thay các giá trị x = 2; y = 1 vào đa thức Q rồi thực hiện phép tính.

Lời giải chi tiết :

Thay x = 2; y = 1 vào đa thức Q ta được:

\(Q = {2^3} - {3.2^2}.1 + {3.2.1^3} - {1^3} = 8 - 12 + 6 - 1 = 1\)

Vậy đa thức Q = 1 tại x = 2; y = 1

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK