Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Bài 2. Các phép tính với đa thức nhiều biến Giải mục 2 trang 12, 13 Toán 8 tập 1 - Cánh diều: Cho hai đa thức...

Giải mục 2 trang 12, 13 Toán 8 tập 1 - Cánh diều: Cho hai đa thức...

Hướng dẫn cách giải/trả lời HĐ 2, LT 2 mục 2 trang 12, 13 SGK Toán 8 tập 1 - Cánh diều Bài 2. Các phép tính với đa thức nhiều biến. Cho hai đa thức: (P = {x^2} + 2{rm{x}}y + {y^2}) và (Q = {x^2} - 2{rm{x}}y + {y^2})a) Viết hiệu P – Q theo hàng ngang...

Câu hỏi:

Hoạt động 2

Cho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)

a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc

b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau.

c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm .

Hướng dẫn giải :

- Viết hiệu P – Q theo hàng ngang

- Bỏ dấu ngoặc rồi đổi dấu các hạng tử, nhóm các đơn thức đồng dạng và thực hiện phép tính.

Lời giải chi tiết :

a)

\(P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)

b)

\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\end{array}\)

c)

\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\P - Q = 4{\rm{x}}y\end{array}\)


Câu hỏi:

Luyện tập 2

Với ba đa thức: \(A = {x^2} - 2{\rm{x}}y + {y^2};B = 2{{\rm{x}}^2} - {y^2};C = {x^2} - 3{\rm{x}}y\)(ở trong ví dụ 3). Hãy tính:

a) B – C

b) (B – C) + A

Hướng dẫn giải :

Thực hiện theo quy tắc cộng, trừ đa thức nhiều biến.

Lời giải chi tiết :

a) Ta có:

\(\begin{array}{l}B - C = \left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right)\\B - C = 2{{\rm{x}}^2} - {y^2} - {x^2} + 3{\rm{x}}y\\B - C = \left( {2{{\rm{x}}^2} - {x^2}} \right) + 3{\rm{x}}y - {y^2} = {x^2} + 3{\rm{x}}y - {y^2}\end{array}\)

b) Ta có:

\(\begin{array}{l}(B - C) + A = {\rm{[}}\left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right){\rm{] + (}}{{\rm{x}}^2} - 2{\rm{x}}y + {y^2})\\(B - C) + A = {x^2} + 3{\rm{x}}y - {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\(B - C) + A = \left( {{x^2} + {x^2}} \right) + \left( {3{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\(B - C) + A = 2{{\rm{x}}^2} + xy\end{array}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK