Viết mỗi đa thức sau dưới dạng tích của hai đa thức:
\(a){x^2} - {y^2}\) \(b){x^3} - {y^3}\) \(c){x^3} + {y^3}\)
Áp dụng các hằng đẳng thức hiệu hai bình phương, tổng, hiệu hai lập phương để viết các đẳng thức dưới dạng tích hai đa thức.
\(a){x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\)
\(b){x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\)
\(c){x^3} + {y^3} = \left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)
Phân tích mỗi đa thức sau thành nhân tử:
\(a){\left( {x + 2y} \right)^2} - {\left( {2{\rm{x}} - y} \right)^2}\)
\(b)125 + {y^3}\)
\(c)27{{\rm{x}}^3} - {y^3}\)
Áp dụng các hằng đẳng thức hiệu hai bình phương, tổng, hiệu hai lập phương để viết các đẳng thức dưới dạng tích hai đa thức.
\(a){\left( {x + 2y} \right)^2} - {\left( {2{\rm{x}} - y} \right)^2} = \left( {x + 2y + 2x - y} \right)\left( {x + 2y - 2{\rm{x}} + y} \right) = \left( {3{\rm{x}} + y} \right)\left( {3y - x} \right)\)
\(b)125 + {y^3} = {5^3} + {y^3} = \left( {5 + y} \right)\left( {25 - 5y + {y^2}} \right)\)
\(c)27{{\rm{x}}^3} - {y^3} = {\left( {3{\rm{x}}} \right)^3} - {y^3} = \left( {3{\rm{x}} - y} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}}y + {y^2}} \right)\)
Cho đa thức: \({x^2} - 2{\rm{x}}y + {y^2} + x - y\)
a) Nhóm ba số hạng đầu và sử dụng hằng đẳng thức để viết nhóm đó thành tích
b) Phân tích đa thức trên thành nhân tử
Nhóm 3 số hạng đầu để viết thành hằng đẳng thức.
a) Ta có: \({x^2} - 2{\rm{x}}y + {y^2} + x - y = \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right) + \left( {x - y} \right) = {\left( {x - y} \right)^2} + \left( {x - y} \right) = \left( {x - y} \right)\left( {x - y} \right) + \left( {x - y} \right)\)
b) \({x^2} - 2{\rm{x}}y + {y^2} + x - y = \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right) + \left( {x - y} \right) = {\left( {x - y} \right)^2} + \left( {x - y} \right) = \left( {x - y} \right)\left( {x - y} \right) + \left( {x - y} \right) = \left( {x - y} \right)\left( {x - y + 1} \right)\)
Phân tích mỗi đa thức sau thành nhân tử:
\(a)3{{\rm{x}}^2} - 6{\rm{x}}y + 3{y^2} - 5{\rm{x}} + 5y\)
\(b)2{{\rm{x}}^2}y + 4{\rm{x}}{y^2} + 2{y^3} - 8y\)
Phân tích đa thức thành nhân tử bằng phương pháp vận dụng hằng đẳng thức thông qua nhóm các số hạng và đặt nhân tử chung.
\(\begin{array}{l}a)3{{\rm{x}}^2} - 6{\rm{x}}y + 3{y^2} - 5{\rm{x}} + 5y\\ = \left( {3{{\rm{x}}^2} - 6{\rm{x}}y + 3{y^2}} \right) - \left( {5{\rm{x}} - 5y} \right)\\ = 3\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right) - 5\left( {x - y} \right)\\ = 3{\left( {x - y} \right)^2} - 5\left( {x - y} \right)\\ = \left( {x - y} \right)\left[ {3\left( {x - y} \right) - 5} \right] = \left( {x - y} \right)\left( {3{\rm{x}} - 3y - 5} \right)\end{array}\)
\(\begin{array}{l}b)2{{\rm{x}}^2}y + 4{\rm{x}}{y^2} + 2{y^3} - 8y\\ = 2y\left[ {\left( {{x^2} + 2{\rm{x}}y + {y^2}} \right) - 4} \right]\\ = 2y\left[ {{{\left( {x + y} \right)}^2} - {2^2}} \right]\\ = 2y\left( {x + y + 2} \right)\left( {x + y - 2} \right)\end{array}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK