Cho ∆ABC = ∆MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120°. Tính tổng số đo các góc MNP và MPN của tam giác MNP.
Hai tam giác bằng nhau suy ra các góc tương ứng bằng nhau.
Vì BO là phân giác của góc ABC nên\(\widehat {ABO} = \widehat {CBO} = \frac{{\widehat {ABC}}}{2}\)
Vì CO là phân giác của góc ACB nên \(\widehat {ACO} = \widehat {BCO} = \frac{{\widehat {ACB}}}{2}\)
Xét DCOB ta có: \(\widehat {BOC} + \widehat {OBC} + \widehat {OCB} = 180^\circ \) (tổng ba góc của một tam giác)
Suy ra \(\widehat {OBC} + \widehat {OCB} = 180^\circ - \widehat {BOC} = 180^\circ - 120^\circ = 60^\circ .\)
Mà \(\widehat {CBO} = \frac{{\widehat {ABC}}}{2},\widehat {BCO} = \frac{{\widehat {ACB}}}{2}.\)
Suy ra \(\frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = 60^\circ \)
Do đó \(\widehat {ABC} + \widehat {ACB} = 2.60^\circ = 120^\circ .\)
Mặt khác ∆ABC = ∆MNP nên ta có:
\(\widehat {ABC} = \widehat {MNP}\) và \(\widehat {ACB} = \widehat {MPN}\) (các cặp góc tương ứng).
Suy ra \(\widehat {MNP} + \widehat {MPN} = \widehat {ABC} + \widehat {ACB} = 120^\circ \)
Vậy \(\widehat {MNP} + \widehat {MPN} = 120^\circ \)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK