Phép cộng số nguyên
I. Cộng hai số nguyên cùng dấu
1. Phép cộng hai số nguyên dương
Cộng hai số nguyên dương chính là cộng hai số tự nhiên khác \(0\).
Ví dụ: \(2 + 4 = 6\).
2. Phép cộng hai số nguyên âm
Để cộng hai số nguyên âm, ta làm như sau:
Bước 1: Bỏ dấu “-” trước mỗi số
Bước 2: Tính tổng của hai số nguyên dương nhận được ở Bước 1.
Bước 3: Thêm dấu “-” trước kết quả nhận được ở Bước 2, ta có tổng cần tìm.
Nhận xét:
- Tổng của hai số nguyên dương là số nguyên dương.
- Tổng của hai số nguyên âm là số nguyên âm.
Chú ý: Cho \(a,\,\,b\) là hai số nguyên dương, ta có:
\(\begin{array}{l}\left( { + a} \right) + \left( { + b} \right) = a + b\\\left( { - a} \right) + \left( { - b} \right) = - \left( {a + b} \right)\end{array}\)
Ví dụ:
\(\left( { - 3} \right) + \left( { - 5} \right) = - \left( {3 + 5} \right) = - 8\).
\(\left( { - 13} \right) + \left( { - 7} \right) = - \left( {13 + 7} \right) = - 20\).
II. Cộng hai số nguyên khác dấu
Để cộng hai số nguyên khác dấu, ta làm như sau:
Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại.
Bước 2. Trong hai số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn.
Bước 3. Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm.
Nhận xét: Hai số nguyên đối nhau có tổng bằng \(0\): \(a + \left( { - a} \right) = 0\).
Chú ý:
- Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương.
- Nếu số dương bằng số đối của số âm thì ta có tổng bằng \(0\).
- Nếu số dương bé hơn số đối của số âm thì ta có tổng âm.
Ví dụ:
a) \(\left( { - 8} \right) + 2 = - \left( {8 - 2} \right) = - 6.\)
b) \(17 + \left( { - 5} \right) = 17 - 5 = 12\).
c) \(\left( { - 5} \right) + 5 = 0\) (Do \( - 5\) và \(5\) là hai số đối nhau).
III. Tính chất của phép cộng các số nguyên
Phép cộng số nguyên có các tính chất:
- Giao hoán: \(a + b = b + a\);
- Kết hợp: \(\left( {a + b} \right) + c = a + \left( {b + c} \right);\)
- Cộng với số \(0\): \(a + 0 = 0 + a;\)
- Cộng với số đối: \(a + \left( { - a} \right) = \left( { - a} \right) + a = 0.\)
Ví dụ 1:
Tính một cách hợp lí: \(\left( { - 34} \right) + \left( { - 15} \right) + 34\)
Ta có:
\(\left( { - 34} \right) + \left( { - 15} \right) + 34\)
\(= \left( { - 15} \right) + \left( { - 34} \right) + 34\) (Tính chất giao hoán)
\( = \left( { - 15} \right) + \left[ {\left( { - 34} \right) + 34} \right]\) (Tính chất kết hợp)
\( = \left( { - 16} \right) + 0\) (cộng với số đối)
\( = - 16\) (cộng với số 0).
Ví dụ 2:
Trong một ngày, nhiệt độ ở Mát-xcơ-va lúc 5 giờ là \( - {7^o}C\), đến 10 giờ tăng thêm \({6^o}C\) và lúc 12 giờ tăng thêm \({4^o}C\). Nhiệt độ ở Mát-xcơ-va lúc 12 giờ là bao nhiêu?
Giải
Nhiệt độ ở Mát-xcơ-va lúc 12 giờ là:
\(\left( { - 7} \right) + 6 + 4 = \left( { - 7} \right) + \left( {6 + 4} \right) = \left( { - 7} \right) + 10 = 10 - 7 = 3\,\,\left( {^oC} \right)\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Năm đầu tiên của cấp trung học cơ sở, mọi thứ đều mới mẻ và đầy thách thức. Hãy tự tin làm quen với bạn bè mới và đón nhận những cơ hội học tập thú vị!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK