Cho hàm số \(f\left( x \right) = 3{x^2}\) xác định trên \(\mathbb{R}\).
a) Chứng minh rằng \(F\left( x \right) = {x^3}\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
b) Với \(C\) là hằng số tuỳ ý, hàm số \(H\left( x \right) = F\left( x \right) + C\) có là nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) không?
c) Giả sử \(G\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\). Tìm đạo hàm của hàm số \(G\left( x \right) - F\left( x \right)\). Từ đó, có nhận xét gì về hàm số \(G\left( x \right) - F\left( x \right)\)?
a) Để chứng minh \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\), ta cần chỉ ra rằng \(F’\left( x \right) = f\left( x \right)\).
b) Để kiểm tra hàm số \(H\left( x \right)\) có là một nguyên hàm của \(f\left( x \right)\) hay không, ta cần tính đạo hàm \(H’\left( x \right)\) và so sánh với \(f\left( x \right)\).
c) Tính đạo hàm \(\left[ {G\left( x \right) - F\left( x \right)} \right]’\) và rút ra kết luận.
a) Ta có \(F’\left( x \right) = 3{x^2} = f\left( x \right)\), nên \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
b) Ta có \(H’\left( x \right) = \left[ {F\left( x \right) + C} \right]’ = F’\left( x \right) + C’ = f\left( x \right)\) (do \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)), nên \(H\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).
c) Do \(G\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\), ta có \(G’\left( x \right) = f\left( x \right)\).
Ta có \(\left[ {G\left( x \right) - F\left( x \right)} \right]’ = G’\left( x \right) - F’\left( x \right) = f\left( x \right) - f\left( x \right) = 0\).
Vậy đạo hàm của hàm số \(G\left( x \right) - F\left( x \right)\) bằng 0, tức là \(G\left( x \right) - F\left( x \right)\) là một hằng số (do đạo hàm của một hằng số thì bằng 0).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK