Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm Bài 3 trang 83 Toán 12 tập 1 - Chân trời sáng tạo: Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị...

Bài 3 trang 83 Toán 12 tập 1 - Chân trời sáng tạo: Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị...

Khoảng biến thiên của mẫu số liệu là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu Tìm trung vị \({Q_2}\) Tìm. Giải và trình bày phương pháp giải bài tập 3 trang 83 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài 2. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm. Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau: a) Hãy tính khoảng biến thiên...

Đề bài :

Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau:

imagea) Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu trên. b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là [42; 46) và độ dài mỗi nhóm bằng 4. c) Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu ghép nhóm.

Hướng dẫn giải :

a) Khoảng biến thiên của mẫu số liệu là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu

Tìm trung vị \({Q_2}\)

Tìm trung vị của nửa số liệu bên trái \({Q_2}\), ta được \({Q_1}\)

Tìm trung vị của nửa số liệu bên phải \({Q_2}\), ta được \({Q_3}\)

Khoảng tứ phân vị của mẫu số liệu là hiệu giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu

Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:

\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)

Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu

\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình

Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.

c) Khoảng biến thiên của mẫu số liệu ghép nhóm là hiệu số giữa đầu mút phải của nhóm cuối cùng và đầu mút trái của nhóm đầu tiên có chứa dữ liệu của mẫu số liệu.

Tứ phân vị thứ k, kí hiệu là \({Q_k}\), với k = 1, 2, 3 của mẫu số liệu ghép nhóm được xác định như sau:

\({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}({u_{m + 1}} - {u_m})\)

trong đó:

\(n = {n_1} + {n_2} + {n_3} + ... + {n_k}\) là cỡ mẫu

\([{u_m};{u_{m + 1}}]\) là nhóm chứa tứ phân vị thứ k

\({n_m}\) là tần số của nhóm chứa tứ phân vị thứ k

\(C = {n_1} + {n_2} + {n_3} + ... + {n_{m - 1}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu \({\Delta _Q}\), là hiệu giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).

Tính giá trị đại diện

Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:

\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)

Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu

\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình

Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.

Lời giải chi tiết :

a) Khoảng biến thiên của mẫu số liệu: 61,1 – 42 = 19,1 (km/h)

Cỡ mẫu: n = 20

Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{20}}\) là mẫu số liệu gốc về tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ được xếp theo thứ tự không giảm.

Trung vị \({Q_2} = \frac{1}{2}({x_{10}} + {x_{11}}) = \frac{1}{2}(48,4 + 50,8) = 49,6\)

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái \({Q_2}\) \({Q_1} = \frac{1}{2}({x_5} + {x_6}) = \frac{1}{2}(46,7 + 46,8) = 46,75\)

Tứ phân vị thứ ba là trung bị của nửa số liệu bên phải \({Q_2}\): \({Q_3} = \frac{1}{2}({x_{15}} + {x_{16}}) = \frac{1}{2}(54,8 + 55,6) = 55,2\)

Khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} = {Q_3} - {Q_1} = 8,45\)

Số trung bình: \(\overline x = \frac{{42 + 43,4 + ... + 61,1}}{{20}} = 50,945\)

Phương sai: \({S^2} = \frac{{{{42}^2} + 43,{4^2} + ... + 61,{1^2}}}{{20}} - 50,{945^2} \approx 32,2\)

Độ lệch chuẩn: \(\sigma = \sqrt {32,2} \approx 5,67\)

b)

image

c) Ta có: \({x_1};...;{\rm{ }}{x_3} \in [42;46)\); \({x_4}; \ldots ;{\rm{ }}{x_{10}} \in [46;50)\);\({x_{11}}; \ldots ;{\rm{ }}{x_{14}} \in [50;54)\);\({x_{15}}; \ldots ;{\rm{ }}{x_{17}} \in [54;58)\);\({x_{18}};...;{x_{20}} \in [58;62)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({x_5} + {x_6}) \in [46;50)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}’ = 46 + \frac{{\frac{{20}}{4} - 3}}{7}(50 - 46) = \frac{{330}}{7}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}({x_{15}} + {x_{16}}) \in [54;58)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}’ = 54 + \frac{{\frac{{3.20}}{4} - (3 + 7 + 4)}}{3}(58 - 54) = \frac{{166}}{3}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}’ = {Q_3}’ - {Q_1}’ = \frac{{172}}{{21}}\)

image

Số trung bình: \(\overline x = \frac{{3.44 + 7.48 + 4.52 + 3.56 + 3.60}}{{20}} = 41,8\)

Phương sai: \({S^2} = \frac{{{{3.44}^2} + {{7.48}^2} + {{4.52}^2} + {{3.56}^2} + {{3.60}^2}}}{{20}} - 41,{8^2} = 364,96\)

Độ lệch chuẩn: \(\sigma = \sqrt {364,96} = 19,1\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK