19.1
Đề bài:
Đặt hai đầu điện trở R vào một hiệu điện thế U thì dòng điện chạy qua điện trở là I. Công suất toả nhiệt trên điện trở có thể xác định bằng công thức: P=RI2 và \({\rm{P}} = \frac{{{U^2}}}{R}\) . Công thức P=RI2 cho thấy R càng tăng thì P càng tăng, còn công thức \({\rm{P}} = \frac{{{U^2}}}{R}\) lại cho thấy R càng tăng thì P càng giảm. Như vậy, liệu rằng hai công thức này có mâu thuẫn với nhau hay không? Giải thích
Phương pháp giải
Dựa vào mối liên hệ giữa U, I, R
Không mâu thuẫn. Công thức P=RI2 chỉ cho kết quả P tỉ lệ thuận với R nếu duy trì dòng điện I qua nó là không đổi. Tương tự, công thức \({\rm{P}} = \frac{{{U^2}}}{R}\)chỉ cho kết quả P tỉ lệ nghịch với R khi hiệu điện thế U giữa hai đầu điện trở được duy trì không đổi. Trong khi hiệu điện thế U và cường độ dòng điện I có mối liên hệ với nhau qua định luật Ohm.
19.2
Đề bài:
Mắc hai đầu một điện trở R vào hai cực của một nguồn điện có suất điện động E và điện trở trong r. Gọi P là công suất tiêu thụ ở mạch ngoài và P0 là công suất phát ra của nguồn. Hiệu suất của nguồn điện được xác định bằng tỉ số: \(H = \frac{{\rm{P}}}{{{{\rm{P}}_0}}}\) . Chứng minh rằng trong trường hợp mạch điện trên, có thể biểu diễn: \(H = \frac{R}{{R + r}}\)
Phương pháp giải
Dựa vào công thức tính công suất
Ta có:\(H = \frac{{\rm{P}}}{{{{\rm{P}}_0}}} = \frac{{UI}}{{{\rm{E}}I}} = \frac{U}{{\rm{E}}}\)với \(I = \frac{{\rm{E}}}{{R + r}} \Rightarrow U = RI = \frac{{R{\rm{E}}}}{{R + r}} \Rightarrow \frac{U}{{\rm{E}}} = \frac{R}{{R + r}}\)
19.3
Đề bài:
Cho mạch điện như Hình 19.1. Suất điện động E của nguồn chưa biết. Bỏ qua điện trở của các dây nối. Tìm giá trị của E để nguồn 10 V được nạp điện.
Phương pháp giải
Áp dụng định luật Ohm cho toàn mạch
Nguồn 10 V được nạp khi E có giá trị đủ lớn để triệt tiêu dòng điện do nguồn 10 V tạo ra. Nghĩa là dòng điện chạy qua nguồn 10 V bằng 0 . Khi đó hiệu điện thế giữa hai đầu điện trở 2,5Ω bằng 10 V. Suy ra dòng điện chạy do nguồn phát bằng 4 A. Từ đó, định luật Ohm cho toàn mạch kín: \(4 = \frac{{\rm{E}}}{{3,5}} \Rightarrow {\rm{E}} = 14\;V\)
19.4
Đề bài:
Mắc hai đầu một biến trở R vào hai cực của một nguồn điện không đổi. Điều chỉnh giá trị biến trở R. Bỏ qua điện trở của các dây nối. Đồ thị biểu diễn sự phụ thuộc của hiệu suât nguồn điện vào R như Hình 19.2.
a) Xác định điện trở trong của nguồn điện.
b) Tìm giá trị R của biến trở để hiệu suất nguồn điện bằng 70%.
Phương pháp giải
Áp dụng công thức \(H = \frac{U}{{\rm{E}}} = \frac{R}{{R + r}}\)
a) Từ \(H = \frac{U}{{\rm{E}}} = \frac{R}{{R + r}}\)
Sử dụng các điểm trên đường đồ thị (0,8;0,4) hoặc (1,2;0,5).Suy ra: r=1,2Ω
b) Thay H = 0,7 ; ta tính được: R=2,8Ω
19.5
Đề bài:
Một biến trở được mắc vào hai cực của một nguồn điện không đổi có điện trở trong 2,0Ω. Khi thay đổi giá trị biến trở, ta thu được đồ thị biểu diễn sự phụ thuộc của công suất toả nhiệt trên biến trở vào cường độ dòng điện chạy trong mạch như Hình 19.3. Bỏ qua điện trở của các dây nối. Giá trị biến trở tương ứng với điểm M trên đồ thị bằng bao nhiêu?
Phương pháp giải
Quan sát và phân tích đồ thị
a có biểu thức P theo I: P=UI=(E−rI)I=−rI2+EI . Đường biểu diễn P theo I là một parabol như Hình 19.3.
Mặt khác, từ các bài tập trước, ta có kết quả: Khi chỉnh R = r thì công suất tiêu thụ trên R đạt cực đại. Suy ra, dòng điện ứng với trường hợp này: \({I_{{\rm{P}}\max }} = \frac{{\rm{E}}}{{R + r}} = \frac{{\rm{E}}}{{2r}}\). Mặt khác, dòng điện ứng với điểm M: \({I_M} = \frac{{\rm{E}}}{{{R_M} + r}}\). Từ đồ thị, ta thấy: IM=4 ô; IPmax=2,5 ô. Nên: \(\frac{{{I_M}}}{{{I_{{\rm{P}}\max }}}} = \frac{{\rm{E}}}{{\left( {{R_M} + r} \right)}} \cdot \frac{{2r}}{{\rm{E}}} = \frac{{2r}}{{{R_M} + r}} = \frac{4}{{2,5}} \Rightarrow {R_M} = 0,5\Omega \)
19.6
Đề bài:
Mắc hai đầu một biến trở R vào hai cực của một nguồn điện không đổi. Điều chỉnh giá trị biến trở R. Bỏ qua điện trở của các dây nối. Đồ thị biểu diễn sự phụ thuộc của công suất toả nhiệt trên biến trở P theo R như Hình 19.4.
a) Tính suất điện động và điện trở trong của nguồn điện.
b) Giả sử tăng R tuyến tính theo thời gian, bắt đầu từ giá trị 0 đến rất lớn. Thời điểm t=12,5 s kể từ lúc bắt đầu tăng, công suất P đạt giá trị cực đại. Tính khoảng thời gian giữa hai lần liên tiếp công suất P đạt giá trị 5 W.
Phương pháp giải
Quan sát và phân tích đồ thị\(R + \frac{{{r^2}}}{R} \ge 2r\)
a) Ta có, công suất toả nhiệt trên biến trở: \({\rm{P}} = R{I^2} = R\frac{{{{\rm{E}}^2}}}{{{{\left( {R + r} \right)}^2}}} = \frac{{{{\rm{E}}^2}}}{{R + 2r + \frac{{{r^2}}}{R}}}\)
Áp dụng bất đẳng thức Cauchy ta có: \(R + \frac{{{r^2}}}{R} \ge 2r\) Dấu "=” của biểu thức này ( R = r) tương ứng với giá trị cực đại của P: \({{\rm{P}}_{{\rm{max}}}} = \frac{{{{\rm{E}}^2}}}{{4r}}\)
Từ đồ thị, ta có: r=4Ωvà Pmax=9 W .
Thay vào: \({{\rm{P}}_{\max }} = \frac{{{{\rm{E}}^2}}}{{4r}} \Rightarrow 9 = \frac{{{{\rm{E}}^2}}}{{4.4}} \Rightarrow {\rm{E}} = 12\;V\)
b) Với P=5 W ta thấy trên đồ thị có một giá trị tương ứng là R2=20Ω. Giá trị R1 còn lại thoả điều kiện R1R2=r2⇒R1⋅20=42⇒R1=0,8Ω
Từ đề bài, ta có: R=0,32t(Ω), (t tính bằng s). Từ đó, thời gian cần tìm là:
\({\rm{\Delta }}t = \frac{{20 - 0,8}}{{0,32}} = 60{\rm{\;s}}\)
19.7
Đề bài:
Xét mạch điện như Hình 19.5. Bỏ qua điện trở của các dây nối và của ampe kế A. Biết R1=4Ω;R2=2Ω;R3=8Ω;R4=6Ω. Ampe kế chỉ 0,4 A và hiệu suất của nguồn bằng 80%.
a) Tính suất điện động P và điện trở trong r.
b) Tính nhiệt lượng toả ra trên điện trở R4 sau 25 s.
Phương pháp giải
Phân tích lại mạch điện
a) Chập các điểm N và B (do điện trở ampe kế không đáng kể). Vẽ lại mạch như hình dưới.
Điện trở tương đương mạch ngoài: \({R_{{\rm{AM}}}} = {R_{{\rm{AB}}}} + {R_{{\rm{BM}}}} = 2,4 + 1,6 = 4{\rm{\Omega }}\)
Hiệu suất: \(H = \frac{R}{{R + r}} \Rightarrow 0,8 = \frac{4}{{4 + r}} \Rightarrow r = 1{\rm{\Omega }}\)
Dòng điện trong mạch và các hiệu điện thế: \(\begin{array}{l}I = \frac{{\rm{E}}}{{{R_{AM}} + r}} = \frac{{\rm{E}}}{{4 + r}} \Rightarrow {U_{AB}} = \frac{{2,4{\rm{E}}}}{{4 + r}}\\ \Rightarrow {I_4} = \frac{{0,4{\rm{E}}}}{{4 + r}};{U_{BM}} = \frac{{1,6{\rm{E}}}}{{4 + r}} \Rightarrow {I_3} = \frac{{0,2{\rm{E}}}}{{4 + r}}\end{array}\)
Từ đó: \({I_A} = {I_4} - {I_3} \Rightarrow \frac{{0,2{\rm{E}}}}{{4 + 1}} = 0,4\;A \Rightarrow {\rm{E}} = 10\;V\)
b) Thay vào: \({I_4} = 0,8{\rm{\;A}} \Rightarrow {Q_4} = R{I^2}t = 6.0,{8^2}.25 = 96{\rm{\;J}}\)
Học Vật Lý cần sách giáo khoa, vở bài tập, bút mực, bút chì, máy tính cầm tay và các dụng cụ thí nghiệm như máy đo, nam châm, dây dẫn.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Vật lý học là môn khoa học tự nhiên khám phá những bí ẩn của vũ trụ, nghiên cứu về vật chất, năng lượng và các quy luật tự nhiên. Đây là nền tảng của nhiều phát minh vĩ đại, từ lý thuyết tương đối đến công nghệ lượng tử.'
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK