Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 8. Quan hệ vuông góc trong không gian Bài 3 trang 73 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp tam giác đều S. ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\)...

Bài 3 trang 73 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp tam giác đều S. ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\)...

Sử dụng kiến thức về góc nhị diện: Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hướng dẫn trả lời - Bài 3 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài 5. Góc giữa đường thẳng và mặt phẳng Góc nhị diện. Cho hình chóp tam giác đều S. ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\). Tính số đo góc phẳng nhị diện \(\left[ {S, BC, A} \right]\)...

Đề bài :

Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).

Hướng dẫn giải :

+ Sử dụng kiến thức về góc nhị diện: Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hình tạo bởi \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) và d được gọi là góc nhị diện tạo bởi \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\), kí hiệu \(\left[ {{P_1},d,{Q_1}} \right]\).

+ Sử dụng kiến thức về góc phẳng nhị diện để tính: Góc phẳng nhị diện của góc nhị diện có đỉnh nằm trên cạnh của nhị diện, có hai cạnh lần lượt nằm trên hai mặt của nhị diện và vuông góc với cạnh của nhị diện.

Lời giải chi tiết :

image

Gọi M là trung điểm của BC, G là trọng tâm của tam giác ABC.

Suy ra, \(SG \bot \left( {ABC} \right),SM \bot BC,AM \bot BC\)

Do đó, góc SMG là góc phẳng nhị diện \(\left[ {S,BC,A} \right]\)

Vì tam giác ABC đều cạnh a nên \(\widehat {ABC} \) \( = {60^0},AB \) \( = a\), AM là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABM vuông tại M. Suy ra: \(AM \) \( = AB.\sin {60^0} \) \( = \frac{{a\sqrt 3 }}{2}\)

Vì G là trọng tâm tam giác ABC nên \(GM \) \( = \frac{1}{3}AM \) \( = \frac{{a\sqrt 3 }}{6}\)

Vì tam giác SBC đều nên SM là đường trung tuyến đồng thời là đường cao.

Áp dụng định lý Pythagore vào tam giác SBM vuông tại G ta có:

\(SM \) \( = \sqrt {S{B^2} - B{M^2}} \) \( = \frac{{a\sqrt 6 }}{6}\)

Vì \(SG \bot \left( {ABC} \right) \) \( \Rightarrow SG \bot GM\). Áp dụng định lý Pythagore vào tam giác SGM vuông tại G ta có: \(SG \) \( = \sqrt {S{M^2} - G{M^2}} \) \( = \frac{{a\sqrt 3 }}{6}\)

Vì \(GM \) \( = SG\left( { = \frac{{a\sqrt 3 }}{6}} \right),\widehat {SGM} \) \( = {90^0}\) nên tam giác SMG vuông cân tại G.

Do đó, \(\widehat {SMG} \) \( = {45^0}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK