Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 8. Quan hệ vuông góc trong không gian Bài 3 trang 76 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp S. ABC có đáy là tam giác đều cạnhHình chiếu vuông góc của S trên mặt phẳng...

Bài 3 trang 76 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp S. ABC có đáy là tam giác đều cạnhHình chiếu vuông góc của S trên mặt phẳng...

Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính. Lời Giải - Bài 3 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài tập cuối chương 8. Cho hình chóp S. ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho \(HA = 2HB\)...

Đề bài :

Cho hình chóp S. ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho \(HA = 2HB\). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng \({60^0}\). Tính khoảng cách giữa hai đường thẳng SA và BC theo a.

Hướng dẫn giải :

- Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính:

+ Nếu đường thẳng a vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a với (P) bằng \({90^0}\).

+ Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a và hình chiếu a’ của a trên (P) gọi là góc giữa đường thẳng a và (P).

- Sử dụng kiến thức về khoảng cách giữa hai đường thẳng chéo nhau để tính: Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó, kí hiệu d(a, b).

Lời giải chi tiết :

image

Áp dụng định lý côsin vào tam giác AHC có:

\(C{H^2} \) \( = A{C^2} + A{H^2} - 2AC.AH.\cos \widehat {CAH}\)

\( \Rightarrow C{H^2} \) \( = {a^2} + {\left( {\frac{{2a}}{3}} \right)^2} - 2a.\frac{{2a}}{3}.\cos {60^0} \) \( = \frac{{7{a^2}}}{9} \Rightarrow CH \) \( = \frac{{a\sqrt 7 }}{3}\)

Vì \(SH \bot \left( {ABC} \right)\) nên HC là hình chiếu vuông góc của SC trên mặt phẳng (ABC)

Do đó, \(\left( {SC,\left( {ABC} \right)} \right) \) \( = \left( {SC,HC} \right) \) \( = \widehat {SCH} \) \( = {60^0}\)

Trong tam giác SCH vuông tại H có: \(SH \) \( = CH.\tan {60^0} \) \( = \frac{{a\sqrt 7 }}{3}.\sqrt 3 \) \( = \frac{{a\sqrt {21} }}{3}\)

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Khi đó, BC//AI. Suy ra: \(d\left( {BC,SA} \right) \) \( = d\left( {BC,\left( {SAI} \right)} \right) \) \( = d\left( {B,\left( {SAI} \right)} \right) \) \( = \frac{3}{2}d\left( {H;\left( {SAI} \right)} \right)\)

Gọi K là hình chiếu của H trên SI.

Vì \(SH \bot AI,AI \bot HI \Rightarrow AI \bot \left( {SHI} \right) \Rightarrow AI \bot KH\)

Mà \(HK \bot SI \Rightarrow HK \bot \left( {SAI} \right) \Rightarrow d\left( {H,\left( {SAI} \right)} \right) \) \( = HK\)

Ta có: \(\widehat {HAI} \) \( = {180^0} - \left( {{{60}^0} + {{60}^0}} \right) \) \( = {60^0}\)

Tam giác AHI vuông tại I nên \(HI \) \( = HA.\sin {60^0} \) \( = \frac{{2a}}{3}.\frac{{\sqrt 3 }}{2} \) \( = \frac{{a\sqrt 3 }}{3}\)

Tam giác SIH vuông tại H có: \(\frac{1}{{H{K^2}}} \) \( = \frac{1}{{H{S^2}}} + \frac{1}{{H{I^2}}} \) \( = \frac{9}{{21{a^2}}} + \frac{9}{{3{a^2}}} \) \( = \frac{{24}}{{7{a^2}}} \Rightarrow HK \) \( = \frac{{a\sqrt {42} }}{{12}}\)

Do đó: \(d\left( {BC,SA} \right) \) \( = \frac{{a\sqrt {42} }}{8}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK