Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 4. Đường thẳng và mặt phẳng. Quan hệ song song trong không gian Bài 5 trang 122 SBT Toán 11 - Chân trời sáng tạo tập 1: Cho hình chóp S. ABCD có đáy là hình bình hành...

Bài 5 trang 122 SBT Toán 11 - Chân trời sáng tạo tập 1: Cho hình chóp S. ABCD có đáy là hình bình hành...

Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh. Hướng dẫn giải - Bài 5 trang 122 sách bài tập toán 11 - Chân trời sáng tạo tập 1 - Bài 3. Đường thẳng và mặt phẳng song song. Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA...

Đề bài :

Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng \(\left( \alpha \right)\) với các mặt của hình chóp.

Hướng dẫn giải :

Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì a song song với (P).

Lời giải chi tiết :

image

Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.

Vì M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác ABD. Do đó, MN//BD.

Vì P, R lần lượt là trung điểm của SD, SB nên PR là đường trung bình của tam giác SBD. Do đó, PR//BD.

Vì MN//BD, PR//BD nên MN//PR.

Suy ra bốn điểm M, N, P, R tạo thành mặt phẳng (MNPR).

Ta có: MN//BD, \(MN \subset \left( {MNPR} \right)\), BD không nằm trong mặt phẳng (MNPR) nên BD//(MNPR).

Chứng minh tương tự ta có: SA//(MNPR).

Vì mặt phẳng (MNPR) đi qua M và song song với BD, SA nên (MNPR) là mặt phẳng \(\left( \alpha \right)\).

Trong mặt phẳng (SAB), vẽ đường thẳng d đi qua S và d//AB//CD.

Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q. Suy ra, mặt phẳng \(\left( \alpha \right)\) là (MNPI).

Ta có: \(MN \subset \left( {ABCD} \right),MN \subset \left( {MNPI} \right)\) nên \(\left( {MNPI} \right) \cap \left( {ABCD} \right) = MN\) hay \(\left( \alpha \right) \cap \left( {ABCD} \right) = MN\).

Tương tự ta có:

\(\left( \alpha \right) \cap \left( {SAD} \right) = NP,\left( \alpha \right) \cap \left( {SCD} \right) = PQ,\left( \alpha \right) \cap \left( {SBC} \right) = QR,\left( \alpha \right) \cap \left( {ABS} \right) = MR\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK