Xét tính chẵn, lẻ của các hàm số sau:
a) \(y = \frac{{\sin 3x}}{x}\);
b) \(y = - 5{x^2} + \cos \frac{x}{2}\);
c) \(y = x\sqrt {1 + \cos 2x} \);
d) \(y = \cot x - \frac{2}{{\sin x}}\);
e) \(y = \left| x \right| + \tan x\);
g) \(y = \tan \left( {x + \frac{\pi }{4}} \right)\).
Sử dụng kiến thức về tính chẵn lẻ của hàm số để xét tính chẵn lẻ của hàm số: Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là:
+ Hàm số chẵn nếu với mọi \(x \in D\) ta có: \( - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\).
+ Hàm số lẻ nếu với mọi \(x \in D\) ta có: \( - x \in D\) và \(f\left( { - x} \right) = - f\left( x \right)\).
a) Tập xác định của hàm số \(y = \frac{{\sin 3x}}{x}\) là \(D = \mathbb{R}\backslash \left\{ 0 \right\}\) thỏa mãn điều kiện \( - x \in D\) với mọi \(x \in D\).
Ta có: \(\frac{{\sin \left( { - 3x} \right)}}{{ - x}} = \frac{{ - \sin 3x}}{{ - x}} = \frac{{\sin 3x}}{x}\). Do đó, hàm số \(y = \frac{{\sin 3x}}{x}\) là hàm số chẵn.
b) Tập xác định của hàm số \(y = - 5{x^2} + \cos \frac{x}{2}\) là \(D = \mathbb{R}\) thỏa mãn điều kiện \( - x \in D\) với mọi \(x \in D\)
Ta có: \( - 5{\left( { - x} \right)^2} + \cos \frac{{ - x}}{2} = - 5{x^2} + \cos \frac{x}{2}\). Do đó, hàm số \(y = - 5{x^2} + \cos \frac{x}{2}\) là hàm số chẵn.
c) Tập xác định của hàm số \(y = x\sqrt {1 + \cos 2x} \) là \(D = \mathbb{R}\) thỏa mãn điều kiện \( - x \in D\) với mọi \(x \in D\)
Ta có: \(\left( { - x} \right)\sqrt {1 + \cos \left( { - 2x} \right)} = - x\sqrt {1 + \cos 2x} \). Do đó, hàm số \(y = x\sqrt {1 + \cos 2x} \) là hàm số lẻ.
d) Tập xác định của hàm số \(y = \cot x - \frac{2}{{\sin x}}\) là \(D = \mathbb{R}\backslash \left\{ {k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\) thỏa mãn điều kiện \( - x \in D\) với mọi \(x \in D\).
Ta có: \(\cot \left( { - x} \right) - \frac{2}{{\sin \left( { - x} \right)}} = - \cot x + \frac{2}{{\sin x}} = - \left( {\cot x - \frac{2}{{\sin x}}} \right)\). Do đó, hàm số \(y = \cot x - \frac{2}{{\sin x}}\) là hàm số lẻ.
e) Tập xác định của hàm số \(y = \left| x \right| + \tan x\) là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\) thỏa mãn điều kiện \( - x \in D\) với mọi \(x \in D\).
Ta có: \(\left| { - x} \right| + \tan \left( { - x} \right) = x - \tan x\). Do đó, hàm số \(y = \left| x \right| + \tan x\) không là hàm số chẵn, không là hàm số lẻ
g) Tập xác định của hàm số \(y = \tan \left( {x + \frac{\pi }{4}} \right)\) là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\) không thỏa mãn điều kiện \( - x \in D\) với mọi \(x \in D\) vì \(\frac{{ - \pi }}{4} \in D\) nhưng \(\frac{\pi }{4}\cancel{ \in }D\)
Do đó, hàm số \(y = \tan \left( {x + \frac{\pi }{4}} \right)\) không là hàm số chẵn cũng không là hàm số lẻ.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK