Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng có kích thước và khối lượng như nhau. Chọn ra ngẫu nhiên từ hộp 4 quả bóng. Tính xác suất của các biến cố:
\(A\): “Cả 4 quả bóng lấy ra có cùng màu”;
\(B\): “Trong 4 bóng lấy ra có đủ cả 3 màu”.
‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
‒ Sử dụng quy tắc cộng xác suất cho hai biến cố xung khắc: Cho hai biến cố \(A\) và \(B\) xung khắc. Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 15 quả bóng có \({C}_{15}^4 = 1365\) cách.
\( \Rightarrow n\left( \Omega \right) = 1365\)
Gọi \({A_1}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu xanh”, \({A_2}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu đỏ”, \({A_3}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu vàng”.
Vậy \(A = {A_1} \cup {A_2} \cup {A_3}\) là biến cố “Cả 4 quả bóng lấy ra có cùng màu”.
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^4 = 5\) cách.
\( \Rightarrow n\left( {{A_1}} \right) = 5 \Rightarrow P\left( {{A_1}} \right) = \frac{{n\left( {{A_1}} \right)}}{{n\left( \Omega \right)}} = \frac{5}{{1365}} = \frac{1}{{273}}\)
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^4 = 15\) cách.
\( \Rightarrow n\left( {{A_2}} \right) = 15 \Rightarrow P\left( {{A_2}} \right) = \frac{{n\left( {{A_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{15}}{{1365}} = \frac{1}{{91}}\)
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 4 quả bóng vàng có \({C}_4^4 = 1\) cách.
\( \Rightarrow n\left( {{A_3}} \right) = 1 \Rightarrow P\left( {{A_3}} \right) = \frac{{n\left( {{A_3}} \right)}}{{n\left( \Omega\right)}} = \frac{1}{{1365}}\)
\( \Rightarrow P\left( A \right) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) + P\left( {{A_3}} \right) = \frac{1}{{65}}\)
Gọi \({B_1}\) là biến cố “Lấy ra 2 bóng xanh, 1 bóng đỏ, 1 bóng vàng”, \({B_2}\) là biến cố “Lấy ra 1 bóng xanh, 2 bóng đỏ, 1 bóng vàng”, \({B_3}\) là biến cố “Lấy ra 1 bóng xanh, 1 bóng đỏ, 2 bóng vàng”.
Vậy \(B = {B_1} \cup {B_2} \cup {B_3}\) là biến cố “Trong 4 bóng lấy ra có đủ cả 3 màu”.
Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 6 quả bóng đỏ có 6 cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 4 quả bóng vàng có 4 cách.
\( \Rightarrow n\left( {{B_1}} \right) = 10.6.4 = 240 \Rightarrow P\left( {{B_1}} \right) = \frac{{n\left( {{B_1}} \right)}}{{n\left( \Omega \right)}} = \frac{{240}}{{1365}} = \frac{{16}}{{91}}\)
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 5 quả bóng xanh có 5 cách.
Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^2 = 15\) cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 4 quả bóng vàng có 4 cách.
\( \Rightarrow n\left( {{B_2}} \right) = 5.15.4 = 300 \Rightarrow P\left( {{B_2}} \right) = \frac{{n\left( {{B_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1365}} = \frac{{20}}{{91}}\)
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 5 quả bóng xanh có 5 cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 6 quả bóng đỏ có 6 cách.
Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 4 quả bóng vàng có \({C}_4^2 = 6\) cách.
\( \Rightarrow n\left( {{B_3}} \right) = 5.6.6 = 180 \Rightarrow P\left( {{B_3}} \right) = \frac{{n\left( {{B_3}} \right)}}{{n\left( \Omega \right)}} = \frac{{180}}{{1365}} = \frac{{12}}{{91}}\)
\( \Rightarrow P\left( B \right) = P\left( {{B_1}} \right) + P\left( {{B_2}} \right) + P\left( {{B_3}} \right) = \frac{{48}}{{91}}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK