Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 4 Đường thẳng và mặt phẳng. Quan hệ song song trong không gian Giải mục 2 trang 102, 103, 104, 105 Toán 11 tập 1 - Chân trời sáng tạo: Trong không gian, cho điểm \(M\) ở ngoài đường thẳng \(d\). Đặt \(\left( P \right) = mp\left( {M, d} \right)\)...

Giải mục 2 trang 102, 103, 104, 105 Toán 11 tập 1 - Chân trời sáng tạo: Trong không gian, cho điểm \(M\) ở ngoài đường thẳng \(d\). Đặt \(\left( P \right) = mp\left( {M, d} \right)\)...

Hướng dẫn cách giải/trả lời Hoạt động 2 , Thực hành 2, Hoạt động 3 , Thực hành 3, Vận dụng 2 mục 2 trang 102, 103, 104, 105 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 2. Hai đường thẳng song song. Trong không gian, cho điểm \(M\) ở ngoài đường thẳng \(d\). Đặt \(\left( P \right) = mp\left( {M, d} \right)\). Trong \(\left( P \right)\), qua \(M\) vẽ đường thẳng \(d'\) song song với \(d\)... Trong không gian, cho điểm \(M\) ở ngoài đường thẳng \(d\). Đặt \(\left( P \right) = mp\left( {M,d} \right)\)

Câu hỏi:

Hoạt động 2

a) Trong không gian, cho điểm \(M\) ở ngoài đường thẳng \(d\). Đặt \(\left( P \right) = mp\left( {M,d} \right)\). Trong \(\left( P \right)\), qua \(M\) vẽ đường thẳng \(d’\) song song với \(d\), đặt \(\left( Q \right) = mp\left( {d,d’} \right)\). Có thể khẳng định hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) trùng nhau không?

image

b) Cho ba mặt phẳng \(\left( P \right),\left( Q \right),\left( R \right)\) cắt nhau theo ba giao tuyến \(a,b,c\) phân biệt với \(a = \left( P \right) \cap \left( R \right);b = \left( Q \right) \cap \left( R \right);c = \left( P \right) \cap \left( Q \right)\) (Hình 8).

Nếu \(a\) và \(b\) có điểm chung \(M\) thì điểm \(M\) có thuộc \(c\) không?

image

Hướng dẫn giải :

Áp dụng tính chất 5: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó.

Lời giải chi tiết :

a) Theo đề bài ta có: \(d’ \subset \left( P \right),d’ \subset \left( Q \right)\) nên \(d’\) là giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Lại có: \(d \subset \left( P \right),d \subset \left( Q \right)\) nên \(d\) cũng là giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Theo tính chất thừa nhận 5: hai mặt phẳng phân biệt có một đường thẳng chung duy nhất. Vậy hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) trùng nhau.

b) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}M \in a\\a \subset \left( P \right)\end{array} \right\} \Rightarrow M \in \left( P \right)\\\left. \begin{array}{l}M \in b\\b \subset \left( Q \right)\end{array} \right\} \Rightarrow M \in \left( Q \right)\end{array}\)

Do đó điểm \(M\) nằm trên giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Vậy \(M \in c\).


Câu hỏi:

Thực hành 2

Cho hình chóp \(S.ABCD\). Vẽ hình thang \(A{\rm{D}}M{\rm{S}}\) có hai đáy là \(A{\rm{D}}\) và \(M{\rm{S}}\). Gọi \(d\) là đường thẳng trong không gian đi qua \({\rm{S}}\) và song song với \(A{\rm{D}}\). Chứng minh đường thẳng \(d\) nằm trong mặt phẳng \(\left( {SAD} \right)\).

Hướng dẫn giải :

Sử dụng:

‒ Định lí 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.

‒ Tính chất: Có duy nhất một mặt phẳng chứa hai đường thẳng song song.

Lời giải chi tiết :

image

\(A{\rm{D}}M{\rm{S}}\) là hình thang có hai đáy là \(A{\rm{D}}\) và \(M{\rm{S}}\) nên \(A{\rm{D}}\parallel M{\rm{S}}\).

Theo đề bài ta lại có \(d\parallel A{\rm{D}}\).

Do đó \(d \equiv MS\) (theo định lí 1).

Lại có: \(SM \subset \left( {A{\rm{D}}M{\rm{S}}} \right) \Rightarrow d \subset \left( {A{\rm{D}}M{\rm{S}}} \right) \Rightarrow d \subset \left( {SA{\rm{D}}} \right)\).


Câu hỏi:

Hoạt động 3

Ta đã biết trong cùng một mặt phẳng, hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau (Hình 13a).

Trong không gian, cho ba đường thẳng không đồng phẳng, \(a\) và \(b\) cùng song song với \(c\). Gọi \(M\) là điểm thuộc \(a\), \(d\) là giao tuyến của \(mp\left( {a,c} \right)\) và \(mp\left( {M,b} \right)\) (Hình 13b). Do \(b\parallel c\) nên ta có \(d\parallel b\) và \(d\parallel c\). Giải thích tại sao \(d\) phải trùng với \(a\). Từ đó, nêu kết luận về vị trí giữa \(a\) và \(b\).

image

Hướng dẫn giải :

Sử dụng định lí 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.

Lời giải chi tiết :

Ta có: \(d = mp\left( {a,c} \right) \cap mp\left( {M,b} \right) \Rightarrow M \in d\)

Lại có: \(M \in a\)

Mà qua \(M\) chỉ có một đường thẳng song song với đường thẳng \(b\) nên \(d \equiv a\).

Do đó \(a\parallel b\).


Câu hỏi:

Thực hành 3

Cho tứ diện \(ABCD\) có \(I\) và \(J\) lần lượt là trung điểm của các cạnh \(BC\) và \(B{\rm{D}}\). Gọi \(\left( P \right)\) là mặt phẳng đi qua \(I,J\) và cắt hai cạnh \(AC\) và \(A{\rm{D}}\) lần lượt tại \(M\) và \(N\).

a) Chứng minh \(IJNM\) là một hình thang.

b) Tìm vị trí của điểm \(M\) dễ \(IJNM\) là hình bình hành.

image

Hướng dẫn giải :

Sử dụng định lí 2: Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đổi một song song.

Lời giải chi tiết :

a) Ta có: \(I\) là trung điểm của \(BC\)

\(J\) là trung điểm của \(B{\rm{D}}\)

\( \Rightarrow IJ\) là đường trung bình của tam giác \(BCD\)

\( \Rightarrow IJ\parallel CD,IJ = \frac{1}{2}C{\rm{D}}\)

Ta có:

\(\begin{array}{l}IJ = \left( {BC{\rm{D}}} \right) \cap \left( P \right)\\MN = \left( {AC{\rm{D}}} \right) \cap \left( P \right)\\C{\rm{D}} = \left( {AC{\rm{D}}} \right) \cap \left( {BC{\rm{D}}} \right)\\IJ\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(IJ\parallel MN\parallel C{\rm{D}}\).

Vậy \(IJNM\) là hình thang.

b) Để \(IJNM\) là hình bình hành thì \(IJ = MN\).

Mà \(IJ = \frac{1}{2}CD\) nên \(MN = \frac{1}{2}CD\).

Khi đó \(MN\) là đường trung bình của tam giác \(ACD\).

\( \Rightarrow M\) trung điểm của AC.


Câu hỏi:

Vận dụng 2

Một chiếc lều (Hình 16a) được minh hoạ như Hình 16b.

a) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến song song.

b) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến đồng quy.

image

Hướng dẫn giải :

Áp dụng định lí 2: Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.

Lời giải chi tiết :

a) Ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến song song là: \(\left( P \right),\left( Q \right),\left( R \right)\).

b) Ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến đồng quy là: \(\left( P \right),\left( Q \right),\left( S \right)\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK