Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 4 Đường thẳng và mặt phẳng. Quan hệ song song trong không gian Giải mục 2 trang 122, 123, 124 Toán 11 tập 1 - Chân trời sáng tạo: Khi điểm \(M\) thay đổi trên đường thẳng \(a\) thì ảnh \(M’\) của nó thay đổi ở đâu?...

Giải mục 2 trang 122, 123, 124 Toán 11 tập 1 - Chân trời sáng tạo: Khi điểm \(M\) thay đổi trên đường thẳng \(a\) thì ảnh \(M’\) của nó thay đổi ở đâu?...

Hướng dẫn trả lời Hoạt động 2 , Hoạt động 3, Thực hành 2 , Vận dụng 2 mục 2 trang 122, 123, 124 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 5. Phép chiếu song song. Trong Hình 4, xét phép chiếu theo phương (l) lên mặt phẳng (left( P right))... Khi điểm \(M\) thay đổi trên đường thẳng \(a\) thì ảnh \(M’\) của nó thay đổi ở đâu?

Câu hỏi:

Hoạt động 2

Trong Hình 4, xét phép chiếu theo phương \(l\) lên mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) chứa đường thẳng \(a\) và song song với phương chiếu.

a) Khi điểm \(M\) thay đổi trên đường thẳng \(a\) thì ảnh \(M’\) của nó thay đổi ở đâu?

b) Từ đó hãy chỉ ra ảnh của đường thẳng \(a\) qua phép chiếu theo phương \(l\) lên mặt phẳng \(\left( P \right)\).

image

Hướng dẫn giải :

Quan sát hình ảnh và trả lời câu hỏi.

Lời giải chi tiết :

a) Khi điểm \(M\) thay đổi trên đường thẳng \(a\) thì ảnh \(M’\) của nó thay đổi trên đường thẳng \(a’\).

b) Ảnh của đường thẳng \(a\) qua phép chiếu theo phương \(l\) lên mặt phẳng \(\left( P \right)\) là đường thẳng \(a’\).


Câu hỏi:

Hoạt động 3

Trong Hình 5, xét phép chiếu theo phương \(l\) với mặt phẳng chiếu \(\left( P \right)\). Biết \(a\parallel b\) với \(a \subset \left( Q \right)\) và \(b \subset \left( R \right)\). Nêu nhận xét về vị trí tương đối của hình chiếu \(a’,b’\) của \(a,b\) trong hai trường hợp: \(\left( Q \right)\parallel \left( R \right);\left( Q \right) \equiv \left( R \right)\).

image

Hướng dẫn giải :

‒ Quan sát hình ảnh và trả lời câu hỏi.

‒ Sử dụng định lí: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.

Lời giải chi tiết :

Ta có:

\(\left. \begin{array}{l}\left( Q \right)\parallel \left( R \right)\\\left( P \right) \cap \left( Q \right) = a’\\\left( P \right) \cap \left( R \right) = b’\end{array} \right\} \Rightarrow a’\parallel b’\)

Vậy nếu \(\left( Q \right)\parallel \left( R \right)\) thì \(a’\parallel b’\); nếu \(\left( Q \right) \equiv \left( R \right)\) thì \(a’ \equiv b’\).


Câu hỏi:

Thực hành 2

Cho hình thang \(ABCD\) có đáy lớn \(AB\) và \(AB = 2CD\), hình chiếu song song của \(ABCD\) là tứ giác \(A’B’C’D’\). Chứng minh rằng \(A’B’C’D’\) cũng là một hình thang và \(A’B’ = 2C’D’\).

Hướng dẫn giải :

Sử dụng tính chất của phép chiếu song song:

‒ Hình chiếu song song của hai đường thẳng song song là hai đường thẳng song song hoặc trùng nhau.

‒ Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau.

Lời giải chi tiết :

\(ABCD\) là hình thang có đáy lớn \(AB \Rightarrow AB\parallel CD\).

Vì hình chiếu song song của hai đường thẳng song song là hai đường thẳng song song hoặc trùng nhau, mà hình chiếu song song của \(ABCD\) là tứ giác \(A’B’C’D’\) nên \(A’B’\parallel C’D’\). Vậy \(A’B’C’D’\) cũng là một hình thang.

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau, mà \(AB = 2CD,AB\parallel CD\) và \(A’B’\parallel C’D’\) nên \(A’B’ = 2C’D’\).


Câu hỏi:

Vận dụng 2

Cho \(G\) là trọng tâm tam giác \(ABC\), \(M\) là trung điểm \(BC\) và hình chiếu song song của tam giác \(ABC\) là tam giác \(A’B’C’\). Chứng minh rằng hình chiếu \(M’\) của \(M\) là trung điểm của \(B’C’\) và hình chiếu \(G’\) của \(G\) cũng là trọng tâm tam giác \(A’B’C’\).

Hướng dẫn giải :

Sử dụng tính chất của phép chiếu song song:

‒ Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

‒ Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau.

Lời giải chi tiết :

image

Vì phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó nên có \(M\) nằm giữa \(B\) và \(C\) thì \(M’\) nằm giữa \(B’\) và \(C’\).

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau nên có \(MB = MC\) thì \(M’B’ = M’C’\).

Vậy \(M’\) là trung điểm của \(B’C’\).

Vì phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó nên có \(G\) nằm giữa \(A\) và \(M\) thì \(G’\) nằm giữa \(A’\) và \(M’\).

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau nên có \(AG = \frac{2}{3}AM\) thì \(A’G’ = \frac{2}{3}A’M’\).

Vậy \(G’\) là trọng tâm tam giác \(A’B’C’\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK