Cho hình hộp \(ABCD.A’B’C’D’\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(A’B’\) và \(O\) là một điểm thuộc miền trong của mặt bên \(CC’D’D\). Tìm giao tuyến của mặt phẳng \(\left( {OMN} \right)\) với các mặt của hình hộp.
Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:
+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.
+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABB’A’} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABB’A’} \right)\\\left. \begin{array}{l}N \in A’B’ \subset \left( {ABB’A’} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {ABB’A’} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABB’A’} \right) = MN\end{array}\)
\(M\) là trung điểm của \(AB\)
\(N\) là trung điểm của \(A’B’\)
\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABB’A’\)
\( \Rightarrow MN\parallel AA’\parallel BB’\parallel CC’\parallel DD’\)
\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {C{\rm{DD’C’}}} \right)\\MN\parallel C{\rm{D}}\\MN \subset \left( {OMN} \right)\\C{\rm{D}} \subset \left( {C{\rm{DD’C’}}} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {C{\rm{DD’C’}}} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(C{\rm{D}}\).
Gọi \(P = d \cap C’D’,Q = d \cap CD \Rightarrow \left( {OMN} \right) \cap \left( {C{\rm{DD’C’}}} \right) = PQ\)
\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABC{\rm{D}}} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\\left. \begin{array}{l}Q \in C{\rm{D}} \subset \left( {ABC{\rm{D}}} \right)\\Q \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow Q \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right) = MQ\end{array}\)
\(\begin{array}{l}\left. \begin{array}{l}N \in A’B’ \subset \left( {A’B’C'{\rm{D’}}} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {A’B’C'{\rm{D’}}} \right)\\\left. \begin{array}{l}P \in C'{\rm{D’}} \subset \left( {A’B’C'{\rm{D’}}} \right)\\P \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow P \in \left( {OMN} \right) \cap \left( {A’B’C'{\rm{D’}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A’B’C'{\rm{D’}}} \right) = NP\end{array}\)
Gọi \(E = MQ \cap BC,F = MQ \cap AD,G = NP \cap B’C’,H = NP \cap A’D’\)
\(\begin{array}{l}\left. \begin{array}{l}E \in BC \subset \left( {BCC’B’} \right)\\E \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow E \in \left( {OMN} \right) \cap \left( {BCC’B’} \right)\\\left. \begin{array}{l}G \in B’C’ \subset \left( {BCC’B’} \right)\\G \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow G \in \left( {OMN} \right) \cap \left( {BCC’B’} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {BCC’B’} \right) = EG\end{array}\)
\(\begin{array}{l}\left. \begin{array}{l}F \in A{\rm{D}} \subset \left( {A{\rm{DD’A’}}} \right)\\F \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow F \in \left( {OMN} \right) \cap \left( {A{\rm{DD’A’}}} \right)\\\left. \begin{array}{l}H \in A’D’ \subset \left( {A{\rm{DD’A’}}} \right)\\H \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow H \in \left( {OMN} \right) \cap \left( {A{\rm{DD’A’}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A{\rm{DD’A’}}} \right) = FH\end{array}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK