Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 3 Giới hạn. Hàm số liên tục Lý thuyết Giới hạn của hàm số - Toán 11 Chân trời sáng tạo: Giới hạn hữu hạn của hàm số tại một điểm Cho khoảng K chứa điểm \({x_0}\)và hàm số \(y =...

Lý thuyết Giới hạn của hàm số - Toán 11 Chân trời sáng tạo: Giới hạn hữu hạn của hàm số tại một điểm Cho khoảng K chứa điểm \({x_0}\)và hàm số \(y =...

Lời Giải lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo Bài 2. Giới hạn của hàm số. Giới hạn hữu hạn của hàm số tại một điểm...

1. Giới hạn hữu hạn của hàm số tại một điểm

Cho khoảng K chứa điểm \({x_0}\)và hàm số \(y = f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(y = f(x)\) có giới hạn hữu hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

2. Các phép toán về giới hạn hữu hạn của hàm số

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\) thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

* Nhận xét:

\(\begin{array}{l}a,\mathop {\lim }\limits_{x \to {x_0}} {x^k} = {x_0}^k,k \in {\mathbb{Z}^ + }.\\b,\mathop {\lim }\limits_{x \to {x_0}} \left[ {c.f(x)} \right] = c.\mathop {\lim }\limits_{x \to {x_0}} f(x)\end{array}\)

(\(c \in \mathbb{R}\), nếu tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x) \in \mathbb{R}\))

3. Giới hạn một phía

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\).

Ta nói \(y = f(x)\)có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì,\(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

*Chú ý:

  • \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
  • \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) \ne \mathop {\lim }\limits_{x \to {x_0}^ + } f(x)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x)\).
  • Các phép toán về giới hạn hữu hạn của hàm số ở Mục 2 vẫn đúng khi ta thay \(x \to {x_0}\)bằng \(x \to {x_0}^ + \)hoặc \(x \to {x_0}^ - \).

4. Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;a} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} < a\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

  • Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
  • Với c là hằng số, k là một số nguyên dương ta có:

\(\mathop {\lim }\limits_{x \to \pm \infty } c = c,\)\(\mathop {\lim }\limits_{x \to \pm \infty } (\frac{c}{{{x^k}}}) = 0\)

5. Giới hạn vô cực của hàm số tại một điểm

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói hàm số \(f(x)\) có giới hạn bên phải là \( + \infty \) khi \(x \to {x_0}\) về bên phải nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty \)

Ta nói hàm số \(f(x)\) ó giới hạn bên phải là \( - \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = + \infty \)

Các giới hạn một bên\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = - \infty \), \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = - \infty \) được định nghĩa tương tự.

* Chú ý:

  • \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
  • \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty ,\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \left( {a \in \mathbb{R}} \right)\)
  • Giới hạn vô cực

Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L \ne 0\) và \(\mathop {\lim }\limits_{x \to {x_0}^ + } g(x) = + \infty \)hoặc \(\mathop {\lim }\limits_{x \to {x_0}^ + } g(x) = - \infty \)thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } \left[ {f(x).g(x)} \right]\) được tính như sau:

image

Các quy tắc trên vẫn đúng khi thay \({x_0}^ + \)thành \({x_0}^ - \)(hoặc \( + \infty \),\( - \infty \))

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK