Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 3 Giới hạn. Hàm số liên tục Giải mục 5 trang 77, 78 Toán 11 tập 1 - Chân trời sáng tạo: Từ đồ thị và bảng trên, có nhận xét gì về giá trị \(f\left( x \right)\) khi \(x\) dần tới...

Giải mục 5 trang 77, 78 Toán 11 tập 1 - Chân trời sáng tạo: Từ đồ thị và bảng trên, có nhận xét gì về giá trị \(f\left( x \right)\) khi \(x\) dần tới...

Giải và trình bày phương pháp giải Hoạt động 5, Thực hành 5, Vận dụng 2 mục 5 trang 77, 78 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 2. Giới hạn của hàm số. Cho hàm số \(f\left( x \right) = \frac{1}{{x - 1}}\) có đồ thị như Hình 4...Từ đồ thị và bảng trên, có nhận xét gì về giá trị \(f\left( x \right)\) khi \(x\) dần tới

Câu hỏi:

Hoạt động 5

Cho hàm số \(f\left( x \right) = \frac{1}{{x - 1}}\) có đồ thị như Hình 4.

image

a) Tìm các giá trị còn thiếu trong bảng sau:

image

Từ đồ thị và bảng trên, có nhận xét gì về giá trị \(f\left( x \right)\) khi \(x\) dần tới 1 phía bên phải?

b) Tìm các giá trị còn thiếu trong bảng sau:

image

Từ đồ thị và bảng trên, có nhận xét gì về giá trị \(f\left( x \right)\) khi \(x\) dần tới 1 phía bên trái?

Hướng dẫn giải :

Để điền giá trị vào bảng, ta thay giá trị của \(x\) vào hàm số \(f\left( x \right) = \frac{1}{{x - 1}}\).

Lời giải chi tiết :

a)

image

Giá trị \(f\left( x \right)\) trở nên rất lớn khi \(x\) dần tới 1 phía bên phải.

b)

image

Giá trị \(f\left( x \right)\) trở nên rất bé khi \(x\) dần tới 1 phía bên trái.


Câu hỏi:

Thực hành 5

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x}}{{x - 3}}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {3x - 1} \right)\).

Hướng dẫn giải :

Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.

Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.

Lời giải chi tiết :

a) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2x} \right).\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {2x} \right) = 2\mathop {\lim }\limits_{x \to {3^ - }} x = 2.3 = 6;\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}} = - \infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x}}{{x - 3}} = - \infty \)

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {3x - 1} \right) = \mathop {\lim }\limits_{x \to + \infty } x\left( {3 - \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } x.\mathop {\lim }\limits_{x \to + \infty } \left( {3 - \frac{1}{x}} \right)\)

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } x = + \infty ;\mathop {\lim }\limits_{x \to + \infty } \left( {3 - \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } 3 - \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 3 - 0 = 3\)

\( \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {3x - 1} \right) = + \infty \)


Câu hỏi:

Vận dụng 2

Xét tình huống ở đầu bài học. Gọi \(x\) là hoành độ điểm \(H\). Tính diện tích \(S\left( x \right)\) của hình chữ nhật \(OHMK\) theo \(x\). Diện tích này thay đổi như thế nào khi \(x \to {0^ + }\) và khi \(x \to + \infty \).

Hướng dẫn giải :

− Để tính diện tích \(S\left( x \right)\), ta tìm độ dài \(OH\) và \(OK\) rồi áp dụng công thức tính diện tích hình chữ nhật.

− Để xác định xem diện tích \(S\left( x \right)\) thay đổi như thế nào khi \(x \to {0^ + }\) và khi \(x \to + \infty \), ta tính giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right)\) và \(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right)\).

Lời giải chi tiết :

Giả sử điểm \(M\) có hoành độ là \(x\).

Độ dài \(OH\) là hoành độ của điểm \(M\). Vậy \(OH = x\).

Độ dài \(OK\) là tung độ của điểm \(M\). Vậy \(OK = \frac{1}{{{x^2}}}\).

\(S\left( x \right) = OH.OK = x.\frac{1}{{{x^2}}} = \frac{1}{x}\).

\(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x} = + \infty \). Vậy diện tích \(S\left( x \right)\) trở nên rất lớn khi \(x \to {0^ + }\).

\(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 0\). Vậy diện tích \(S\left( x \right)\) dần về 0 khi \(x \to + \infty \).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK