Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 2 Dãy số. Cấp số cộng. Cấp số nhân Giải mục 3 trang 54, 55 Toán 11 tập 1 - Chân trời sáng tạo: Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai \(d\). Tính các tổng...

Giải mục 3 trang 54, 55 Toán 11 tập 1 - Chân trời sáng tạo: Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai \(d\). Tính các tổng...

Vận dụng kiến thức giải Hoạt động 3 , Thực hành 4, Vận dụng 3 mục 3 trang 54, 55 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 2. Cấp số cộng. Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai \(d\)...

Câu hỏi:

Hoạt động 3

Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai \(d\).

a) Tính các tổng: \({u_1} + {u_n};{u_2} + {u_{n - 1}};{u_3} + {u_{n - 2}};...;{u_k} + {u_{n - k + 1}}\) theo \({u_1},n\) và \(d\).

image

b) Chứng tỏ rằng \(2\left( {{u_1} + {u_2} + ... + {u_n}} \right) = n\left( {{u_1} + {u_n}} \right)\).

Hướng dẫn giải :

a) Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

b) Cộng vế với vế các kết quả của câu a).

Lời giải chi tiết :

a) Ta có:

\(\begin{array}{l}{u_1} + {u_n} = {u_1} + \left[ {{u_1} + \left( {n - 1} \right)d} \right] = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\\{u_2} + {u_{n - 1}} = \left[ {{u_1} + d} \right] + \left[ {{u_1} + \left( {\left( {n - 1} \right) - 1} \right)d} \right] = {u_1} + d + {u_1} + \left( {n - 2} \right)d = 2{u_1} + \left( {n - 1} \right)d\\{u_3} + {u_{n - 2}} = \left[ {{u_1} + 2d} \right] + \left[ {{u_1} + \left( {\left( {n - 3} \right) - 1} \right)d} \right] = {u_1} + 2d + {u_1} + \left( {n - 3} \right)d = 2{u_1} + \left( {n - 1} \right)d\\ \vdots \\{u_k} + {u_{n - k + 1}} = \left[ {{u_1} + \left( {k - 1} \right)d} \right] + \left[ {{u_1} + \left( {\left( {n - k + 1} \right) - 1} \right)d} \right]\\ & = {u_1} + \left( {k - 1} \right)d + {u_1} + \left( {n - k} \right)d = 2{u_1} + \left( {n - 1} \right)d\end{array}\)

b) Ta có:

\(\begin{array}{l}{u_1} + {u_n} = 2{u_1} + \left( {n - 1} \right)d\\{u_2} + {u_{n - 1}} = 2{u_1} + \left( {n - 1} \right)d\\{u_3} + {u_{n - 2}} = 2{u_1} + \left( {n - 1} \right)d\\ \vdots \\{u_n} + {u_1} = 2{u_1} + \left( {n - 1} \right)d\end{array}\)

Cộng vế với vế ta được:

\(\begin{array}{l}2\left( {{u_1} + {u_2} + ... + {u_n}} \right) = n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]\\ \Leftrightarrow 2\left( {{u_1} + {u_2} + ... + {u_n}} \right) = n\left( {{u_1} + {u_n}} \right)\end{array}\)


Câu hỏi:

Thực hành 4

a) Tính tổng 50 số tự nhiên chẵn đầu tiên.

b) Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_3} + {u_{28}} = 100\). Tính tổng 30 số hạng đầu tiên của cấp số cộng đó.

c) Cho cấp số cộng \(\left( {{v_n}} \right)\) có \({S_6} = 18\) và \({S_{10}} = 110\). Tính \({S_{20}}\).

Hướng dẫn giải :

Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết :

a) Ta có thể sắp xếp 50 số tự nhiên chẵn đầu tiên thành cấp số cộng có số hạng đầu \({u_1} = 0\) và công sai \(d = 2\).

\( \Rightarrow {S_{50}} = \frac{{50\left[ {2.0 + \left( {50 - 1} \right).2} \right]}}{2} = 2450\)

b) Giả sử cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\).

Ta có: \({u_3} + {u_{28}} = \left( {{u_1} + 2{\rm{d}}} \right) + \left( {{u_1} + 27{\rm{d}}} \right) = 2{u_1} + 29{\rm{d}} \Leftrightarrow 2{u_1} + 29{\rm{d}} = 100\)

\( \Rightarrow {S_{30}} = \frac{{30\left[ {2{u_1} + 29{\rm{d}}} \right]}}{2} = \frac{{30.100}}{2} = 1500\)

c) Giả sử cấp số cộng có số hạng đầu \({v_1}\) và công sai \(d\).

Ta có:

\(\begin{array}{l}{S_6} = 18 \Leftrightarrow \frac{{6\left[ {2{v_1} + 5{\rm{d}}} \right]}}{2} = 18 \Leftrightarrow 2{v_1} + 5{\rm{d}} = 6\left( 1 \right)\\{S_{10}} = 110 \Leftrightarrow \frac{{10\left[ {2{v_1} + 9{\rm{d}}} \right]}}{2} = 110 \Leftrightarrow 2{v_1} + 9{\rm{d}} = 22\left( 1 \right)\end{array}\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2{v_1} + 5{\rm{d}} = 6\\2{v_1} + 9{\rm{d}} = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{v_1} = - 7\\{\rm{d}} = 4\end{array} \right.\)

\( \Rightarrow {S_{20}} = \frac{{20\left[ {2{v_1} + 19{\rm{d}}} \right]}}{2} = \frac{{20\left[ {2.\left( { - 7} \right) + 19.4} \right]}}{2} = 620\)


Câu hỏi:

Vận dụng 3

Một rạp hát có 20 hàng ghế xếp theo hình quạt. Hàng thứ nhất có 17 ghế, hàng thứ hai có 20 ghế, hàng thứ ba có 23 ghế,… cứ thế tiếp tục cho đến hàng cuối cùng (Hình 4).

a) Tính số ghế có ở hàng cuối cùng.

b) Tính tổng số ghế có trong rạp.

image

Hướng dẫn giải :

‒ Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

‒ Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết :

Theo đề bài ta có dãy số chỉ số ghế có ở các hàng là một cấp số cộng có số hạng đầu \({u_1} = 17\) và công sai \(d = 3\).

a) Số ghế có ở hàng cuối cùng là: \({u_{20}} = {u_1} + 19{\rm{d}} = 17 + 19.3 = 74\) (ghế).

b) Tổng số ghế có trong rạp là: \({S_{20}} = \frac{{20\left[ {2{u_1} + 19{\rm{d}}} \right]}}{2} = \frac{{20\left[ {2.17 + 19.3} \right]}}{2} = 910\) (ghế).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK