HĐ Khám phá 1
Gieo một con xúc xắc cân đối và đồng chất. Hãy so sánh khả năng xảy ra của hai biến cố:
A: “Mặt xuất hiện có số chấm là số chẵn”
B: “Mặt xuất hiện có số chấm là số lẻ”
Vì con xúc xắc cân đối và đồng chất nên các mặt có khả năng xuất hiện như nhau
Tập hợp mô tả biến cố A là: , suy ra có 3 kết quả thuận lợi cho biến cố A
Tập hợp mô tả biến cố B là: , suy ra có 3 kết quả thuận lợi cho biến cố B
Vậy khả năng xảy ra của hai biến cố A và B là như nhau
Thực hành 1
Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:
a) “Hai mặt xuất hiện có cùng số chấm”
b) “Tổng số chấm trên hai mặt xuất hiện bằng 9”
Bước 1: Xác định không gian mẫu
Bước 2: Xác định số kết quả thuận lợi của biến cố
Bước 3: Tính xác xuất bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)
Kết quả của mỗi lần thử là một cặp (i; j) với i và j lần lượt là số chấm xuất hiện trên hai xúc xắc, hai con xúc xắc gieo đồng thời nên không quan tâm thứ tự, ta có không gian mẫu là:
\(\Omega = \begin{array}{l}\{(1;1),(1;2),(1;3),(1;4),(1;5),(1;6),(2;2),(2;3),(2;4),(2;5),(2;6),(3;3),(3;4),(3;5),(3;6),\\(4;4),(4;5),(4;6),(5;5),(5;6),(6;6)\}\end{array} \)
Không gian mẫu gồm có 21 kết quả, tức là \(n\left( \Omega \right) = 21\)
a) Ta có tập hợp miêu tả biến cố A
\(A = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\} \Rightarrow n\left( A \right) = 6\)
Do đó, xác suất của biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{21}} = \frac{2}{7}\)
b) Ta có tập hợp miêu tả biến cố B
\(B = \left\{ {(6;3),(5;4)} \right\} \Rightarrow n\left( B \right) = 2\)
Do đó, xác suất của biến cố B là: \(P\left( B \right) = \frac{{n(B)}}{{n(\Omega )}} = \frac{2}{{21}}\)
Vận dụng
Hãy tính xác suất của hai biến cố được nêu ra ở hoạt động khởi động của bài học
Bước 1: Xác định không gian mẫu
Bước 2: Xác định số kết quả thuận lợi của biến cố
Bước 3: Tính xác xuất bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)
Do các viên bi có cùng kích thước và trọng lượng nên số kết quả cho việc lấy 2 viên bi từ hộp có 10 viên bi có \(C_{10}^2\) cách
Gọi A là biến cố “Lấy được hai viên bi cùng màu”
Việc lấy được hai viên bi cùng màu có hai khả năng
+) Khả năng thứ nhất: hai viên bi cùng màu xanh có \(C_5^2\) cách
+) Khả năng thứ hai: hai viên bi cùng màu đỏ có \(C_5^2\) cách
Suy ra có \(2C_5^2 = 20\) kết quả thuận lợi cho biến cố A
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{20}}{{C_{10}^2}} = \frac{4}{9}\)
Gọi B là biến cố “Lấy được hai viên bi khác màu”
Việc lấy được hai viên bi khác màu có hai công đoạn
+) Công đoạn thứ nhất: Lấy 1 viên bi màu xanh có \(5\) cách
+) Công đoạn thứ hai: Lấy 1 viên bi màu đỏ có 5 cách
Suy ra có \(5.5 = 25\) kết quả thuận lợi cho biến cố B
Vậy xác suất của biến cố B là: \(P\left( B \right) = \frac{{n(B)}}{{n(\Omega )}} = \frac{{25}}{{C_{10}^2}} = \frac{5}{9}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK