Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài 4. Tích vô hướng của hai vectơ Mục 3 trang 100, 101 Toán 10 tập 1 Chân trời sáng tạo: Cho hai vectơ (overrightarrow i ,overrightarrow j ) vuông góc có cùng độ dài bằn...

Mục 3 trang 100, 101 Toán 10 tập 1 Chân trời sáng tạo: Cho hai vectơ (overrightarrow i ,overrightarrow j ) vuông góc có cùng độ dài bằn...

Giải mục 3 trang 100, 101 SGK Toán 10 tập 1 - Chân trời sáng tạo - Bài 4. Tích vô hướng của hai vectơ

Thực hành 4

Cho hai vectơ \(\overrightarrow i ,\overrightarrow j \) vuông góc có cùng độ dài bằng 1.

a) Tính \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2};{\left( {\overrightarrow i  - \overrightarrow j } \right)^2};\left( {\overrightarrow i  + \overrightarrow j } \right)\left( {\overrightarrow i  - \overrightarrow j } \right)\).

b) Cho \(\overrightarrow a  = 2\overrightarrow i  + 2\overrightarrow j ,\overrightarrow b  = 3\overrightarrow i  - 3\overrightarrow j \). Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) và tính góc \(\left( {\overrightarrow a ,\overrightarrow b } \right)\)

Hướng dẫn giải :

Sử dụng các tính chất của tích vô hướng giữa các vectơ

Lời giải chi tiết :

a) Ta có hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \) vuông góc nên \(\overrightarrow i .\overrightarrow j  = 0\)

+) \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} + 2\overrightarrow i .\overrightarrow j  = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)

+) \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} - 2\overrightarrow i .\overrightarrow j  = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)

+) \(\left( {\overrightarrow i  + \overrightarrow j } \right)\left( {\overrightarrow i  - \overrightarrow j } \right) = {\left( {\overrightarrow i } \right)^2} - {\left( {\overrightarrow j } \right)^2} = {\left| {\overrightarrow i } \right|^2} - {\left| {\overrightarrow j } \right|^2} = 1 - 1 = 0\)

b) Sử dụng kết quả của câu a) ta có:

\(\overrightarrow a .\overrightarrow b  = \left( {2\overrightarrow i  + 2\overrightarrow j } \right).\left( {3\overrightarrow i  - 3\overrightarrow j } \right) = 2.3.\left( {\overrightarrow i  + \overrightarrow j } \right).\left( {\overrightarrow i  - \overrightarrow j } \right) = 6.0 = 0\)

\(\overrightarrow a .\overrightarrow b  = 0 \Rightarrow \overrightarrow a  \bot \overrightarrow b  \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)

Vận dụng 2

Phân tử sulfur dioxide \((S{O_2})\) có cấu tạo hình chữ V, góc liên kết \(\widehat {OSO}\) gần bằng \(120^\circ \). Người ta biểu diễn sự phân cực giữa nguyên tử S và nguyên tử O bằng các vectơ \(\overrightarrow {{\mu _1}} \)và \(\overrightarrow {{\mu _2}} \) có cùng phương với liên kết cộng hóa trị, có chiều từ nguyên tử S về mỗi nguyên tử O và có độ dài là 1,6 đơn vị (Hình 6). Cho biết vectơ tổng\(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}} \) được dùng để biểu diễn sự phân cực của cả phân tử \(\)SO2. Tính độ dài của \(\overrightarrow \mu  \).

image

Hướng dẫn giải :

Sử dụng kết quả của ví dụ 4 trang 101 \({c^2} = {a^2} + {b^2} - 2bc.\cos C\)

Lời giải chi tiết :

Từ điểm cuối của vectơ \(\overrightarrow {{\mu _1}} \) vẽ vectơ \(\overrightarrow {{\mu _3}}  = \overrightarrow {{\mu _2}} \)

Suy ra \(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}}  = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}}  \Rightarrow \left| {\overrightarrow \mu  } \right| = \left| {\overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}} } \right|\)

Ta có: \(\left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _2}} } \right) = 120^\circ  \Rightarrow \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right) = 60^\circ \)

\( \Rightarrow {\left| {\overrightarrow \mu  } \right|^2} = {\left| {\overrightarrow {{\mu _1}} } \right|^2} + {\left| {\overrightarrow {{\mu _3}} } \right|^2} - 2\left| {\overrightarrow {{\mu _1}} } \right|\left| {\overrightarrow {{\mu _3}} } \right|\cos \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right)\)

          \( = 1,{6^2} + 1,{6^2} - 2.1,6.1,6.\cos 60^\circ  = \frac{{64}}{{25}}\)

\( \Rightarrow \left| {\overrightarrow \mu  } \right| = \sqrt {\frac{{64}}{{25}}}  = 1,6\)

Vậy độ dài của \(\overrightarrow \mu  \) là 1,6 đơn vị

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK