Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Chương 5. Đường tròn Giải mục 3 trang 93, 94, 95 Toán 9 Chân trời sáng tạo tập 1: Cho hai điểm E và F nằm trên đường tròn (O). Có bao nhiêu góc nội tiếp chắn cung EF?...

Giải mục 3 trang 93, 94, 95 Toán 9 Chân trời sáng tạo tập 1: Cho hai điểm E và F nằm trên đường tròn (O). Có bao nhiêu góc nội tiếp chắn cung EF?...

Phân tích và giải HĐ5, TH4, VD4, HĐ6, TH5, VD5 mục 3 trang 93, 94, 95 SGK Toán 9 tập 1 - Chân trời sáng tạo Bài 3. Góc ở tâm - góc nội tiếp. Quan sát Hình 13. Hãy cho biết trong các góc \(\widehat {APB};\widehat {AOB};\widehat {AMB};\widehat {AQB}\), góc nào có đỉnh nằm trên đường tròn (O)...Cho hai điểm E và F nằm trên đường tròn (O). Có bao nhiêu góc nội tiếp chắn cung EF?

Câu hỏi:

Hoạt động5

Trả lời câu hỏi Hoạt động 5 trang 93

Quan sát Hình 13. Hãy cho biết trong các góc \(\widehat {APB};\widehat {AOB};\widehat {AMB};\widehat {AQB}\), góc nào có đỉnh nằm trên đường tròn (O).

image

Hướng dẫn giải :

Quan sát hình nêu nhận xét.

Lời giải chi tiết :

Theo Hình 13 thì góc có đỉnh nằm trên đường tròn là: \(\widehat {AMB}\).


Câu hỏi:

Thực hành4

Trả lời câu hỏi Thực hành 4 trang 93

Cho tam giác đều MNP có ba đỉnh nằm trên đường tròn (I). Hãy chỉ ra các góc nội tiếp của đường tròn (I) và tính số đo của các góc nội tiếp đó.

Hướng dẫn giải :

- Đọc dữ kiện đề bài để vẽ hình.

- Dựa vào định nghĩa: góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.

Lời giải chi tiết :

image

Các góc nội tiếp của đường tròn tâm I là \(\widehat {NMP};\widehat {MPN};\widehat {PNM}\)

Vì tam giác MNP đều nên \(\widehat {NMP} = \widehat {MPN} = \widehat {PNM} = {60^o}\).


Câu hỏi:

Vận dụng4

Trả lời câu hỏi Vận dụng 4 trang 93

Cho hai điểm E và F nằm trên đường tròn (O). Có bao nhiêu góc nội tiếp chắn cung EF?

Hướng dẫn giải :

Dựa vào định nghĩa: góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.

Lời giải chi tiết :

Có vô số góc nội tiếp chắn cung EF vì với mỗi một điểm khác E và F nằm trên đường tròn (O) ta có một góc nội tiếp.


Câu hỏi:

Hoạt động6

Trả lời câu hỏi Hoạt động 6 trang 94

Quan sát Hình 15. Ta có góc nội tiếp \(\widehat {AMB}\) chắn cung AB trên đường tròn (O). Cho biết \(\widehat {AOB} = {60^o}\).

a) Tính số đo \(\overset\frown{AB}\).

b) Dùng thước đo góc để tìm số đo \(\widehat {AMB}\)

c) Có nhận xét gì về hai số đo của \(\widehat {AMB}\) và \(\overset\frown{AB}\).

image

Hướng dẫn giải :

- Dựa vào định nghĩa: Số đo cung nhỏ bằng số đo của góc ở tâm chắc cung đó

- Dùng thước đo góc \(\widehat {AMB}\) .

- Nhận xét hai số đo góc vừa tính được.

Lời giải chi tiết :

a) Ta có sđ\(\overset\frown{AB}\) bị chắn bởi góc ở tâm \(\widehat {AOB}\) có số đo bằng 60o suy ra sđ\(\overset\frown{AB}\) = 60o.

b) Dùng thức đo ta được \(\widehat {AMB}\)= 30o .

c) số đo của \(\widehat {AMB}\) = \(\frac{1}{2}\)\(\overset\frown{AB}\).


Câu hỏi:

Thực hành5

Trả lời câu hỏi Thực hành 5 trang 96

Cho ba điểm A, B, C nằm trên đường tròn (O) sao cho \(\widehat {AOB}\)= 50o; \(\widehat {BOC}\)= 30o, điểm B thuộc cung nhỏ AC. Gọi M, N lần lượt là hai điểm trên hai cung nhỏ \(\overset\frown{AB};\overset\frown{AC}\) và chia mỗi cung đó thành hai cung bằng nhau. Tìm số đo các góc sau:

a) \(\widehat {BCA};\widehat {BAC}\)

b) \(\widehat {MBA};\widehat {BAN}\)

Hướng dẫn giải :

- Dựa vào: Trong một đường tròn, góc nội tiếp nhỏ hơn hoặc bằng 90o có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung để tìm \(\widehat {BCA};\widehat {BAC}\)

- Dựa vào số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó để tìm sđ \(\overset\frown{AB}\); sđ\(\overset\frown{AC}\). Sau đó, dựa vào: Trong một đường tròn, góc nội tiếp nhỏ hơn hoặc bằng 90o có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung để tìm \(\widehat {MBA};\widehat {BAN}\).

Lời giải chi tiết :

image

a) Ta có \(\widehat {BCA}\) và \(\widehat {AOB}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AB

suy ra \(\widehat {BCA}\) = \(\frac{{\widehat {AOB}}}{2} = \frac{{{{50}^o}}}{2} = {25^o}\)

Ta có \(\widehat {BAC}\) và \(\widehat {BOC}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BC

suy ra \(\widehat {BAC}\) = \(\frac{{\widehat {BOC}}}{2} = \frac{{{{30}^o}}}{2} = {15^o}\)

b) Ta có sđ \(\overset\frown{AB}\) = 50o ( bằng sđ của góc \(\widehat{AOB}\) cùng chắn \(\overset\frown{AB}\))

suy ra sđ \(\overset\frown{AM}=\)sđ \(\overset\frown{MB}\) = \(\frac{s\overset\frown{AB}}{2}=\frac{{{50}^{o}}}{2}={{25}^{o}}\) hay \(\widehat{MOA}=\widehat{MOB}={{25}^{o}}\)

Ta có \(\widehat {MBA}\) và \(\widehat {MOA}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung MA

suy ra \(\widehat {MBA}\) = \(\frac{{\widehat {MOA}}}{2} = \frac{{{{25}^o}}}{2} = 12,{5^o}\).

Ta có sđ \(\overset\frown{BC}\) = 30o ( bằng sđ của góc \(\widehat{BOC}\) cùng chắn \(\overset\frown{BC}\))

suy ra sđ \(\overset\frown{BN}=\)sđ \(\overset\frown{NC}\) = \(\frac{s\overset\frown{BC}}{2}=\frac{{{30}^{o}}}{2}={{15}^{o}}\) hay \(\widehat{BON}=\widehat{CON}={{15}^{o}}\)

Ta có \(\widehat {BAN}\) và \(\widehat {BON}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BN

suy ra \(\widehat {BAN}\) = \(\frac{{\widehat {BON}}}{2} = \frac{{{{15}^o}}}{2} = 7,{5^o}\).


Câu hỏi:

Vận dụng5

Trả lời câu hỏi Vận dụng 5 trang 96 SGK Toán 9

Một huấn luyện viên cho cầu thủ tập sút bóng vào cầu môn MN (Hình 20). Nếu bóng được đặt ở điểm X thì \(\widehat {MXN}\) gọi là góc sút từ vị trí X. Hãy so sánh các góc sút \(\widehat {MXN};\widehat {MYN};\widehat {MZN}\).

image

Hướng dẫn giải :

Dựa vào: Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết :

Ta có \(\widehat {MXN};\widehat {MYN};\widehat {MZN}\) cùng chắn cung MN suy ra \(\widehat {MXN} = \widehat {MYN} = \widehat {MZN}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK