Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Chương 3. Căn thức Giải mục 1 trang 52, 53, 54 Toán 9 Chân trời sáng tạo tập 1: Kết quả của mỗi bạn có đúng không? Giải thích?...

Giải mục 1 trang 52, 53, 54 Toán 9 Chân trời sáng tạo tập 1: Kết quả của mỗi bạn có đúng không? Giải thích?...

Lời giải bài tập, câu hỏi HĐ1, TH1, TH2, VD1 mục 1 trang 52, 53, 54 SGK Toán 9 tập 1 - Chân trời sáng tạo Bài 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. Bốn ô cửa hình vuông diện tích \(\frac{1}{2}{m^2}\) ghép thành cửa sổ Hình 1. a) Hai bạn An và Mai tính độ dài cạnh a (m) của mỗi ô cửa...Kết quả của mỗi bạn có đúng không? Giải thích?

Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 52

Bốn ô cửa hình vuông diện tích \(\frac{1}{2}{m^2}\) ghép thành cửa sổ Hình 1.

image

a) Hai bạn An và Mai tính độ dài cạnh a (m) của mỗi ô cửa.

image

Kết quả của mỗi bạn có đúng không? Giải thích?

b) Biết rằng \(\sqrt 2 \approx 1,4142\). Không dùng máy tính cầm tay, hai bạn tìm giá trị gần đúng của độ dài mỗi ô cửa.

image

Theo em, bạn nào sẽ tìm ra đáp án nhanh hơn?

Hướng dẫn giải :

Dựa vào diện tích hình vuông: S = a2 với a là độ dài cạnh.

Lời giải chi tiết :

a) Diện tích một hình vuông: S = \(\frac{1}{2}\) (m2)

Mà S = a2 suy ra a = \(\sqrt S = \sqrt {\frac{1}{2}} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\) (m)

Vậy kết quả của 2 bạn đều đúng.

b) Theo em, bạn An sẽ tìm đáp án nhanh hơn.

Vì bạn An chỉ cần tính \(\sqrt {\frac{1}{2}} = \frac{1}{{\sqrt 2 }}\).


Câu hỏi:

Thực hành1

Trả lời câu hỏi Thực hành 1 trang 54

Trục căn thức ở mẫu các biểu thức sau:

a) \(\frac{{\sqrt 7 }}{{\sqrt 3 }}\)

b) \( - \frac{{10}}{{3\sqrt 5 }}\)

c) \(\frac{{2\sqrt 2 }}{{\sqrt {40} }}\)

d) \(\frac{{\sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\)

Hướng dẫn giải :

Dựa vào VD3 trang 53 làm tương tự.

Lời giải chi tiết :

a) \(\frac{{\sqrt 7 }}{{\sqrt 3 }} = \frac{{\sqrt 7 .\sqrt 3 }}{{\sqrt 3 .\sqrt 3 }} = \frac{{\sqrt {21} }}{3}\)

b) \( - \frac{{10}}{{3\sqrt 5 }} = - \frac{{10.\sqrt 5 }}{{3\sqrt 5 .\sqrt 5 }} = - \frac{{10\sqrt 5 }}{{15}}\)

c) \(\frac{{2\sqrt 2 }}{{\sqrt {40} }} = \frac{{2\sqrt 2 .\sqrt {40} }}{{\sqrt {40} .\sqrt {40} }} = \frac{{8\sqrt 5 }}{{40}} = \frac{{\sqrt 5 }}{5}\)

d) \(\frac{{\sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\)\( = \frac{{\sqrt 2 .\left( {\sqrt 5 + \sqrt 2 } \right)}}{{\left( {\sqrt 5 - \sqrt 2 } \right).\left( {\sqrt 5 + \sqrt 2 } \right)}}\)\( = \frac{{\sqrt 2 .\left( {\sqrt 5 + \sqrt 2 } \right)}}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\)\( = \frac{{\sqrt 2 .\left( {\sqrt 5 + \sqrt 2 } \right)}}{{5 - 2}}\)\( = \frac{{\sqrt 2 .\left( {\sqrt 5 + \sqrt 2 } \right)}}{3}\)


Câu hỏi:

Thực hành2

Trả lời câu hỏi Thực hành 2 trang 54

Khử mẫu của các biểu thức lấy căn:

a) \(\sqrt {\frac{{11}}{6}} \)

b) \(a\sqrt {\frac{2}{{5a}}} \) với a > 0

c) \(4x\sqrt {\frac{3}{{4xy}}} \) với x > 0; y > 0

Hướng dẫn giải :

Dựa vào VD2 trang 53 làm tương tự.

Lời giải chi tiết :

a) \(\sqrt {\frac{{11}}{6}} = \sqrt {\frac{{11.6}}{{6.6}}} = \frac{{\sqrt {66} }}{{\sqrt {{6^2}} }} = \frac{{\sqrt {66} }}{6}\)

b) \(a\sqrt {\frac{2}{{5a}}} = a.\sqrt {\frac{{2.5a}}{{5a.5a}}} = a\frac{{\sqrt {10a} }}{{\sqrt {{{(5a)}^2}} }} = a\frac{{\sqrt {10a} }}{{5\left| a \right|}}\) với a > 0

c) \(4x\sqrt {\frac{3}{{4xy}}} = 4x\sqrt {\frac{{3.4xy}}{{4xy.4xy}}} = 4x\frac{{\sqrt {12xy} }}{{\sqrt {{{\left( {4xy} \right)}^2}} }} = \frac{{8x\sqrt {3xy} }}{{\left| {4xy} \right|}}\) với x > 0; y > 0


Câu hỏi:

Vận dụng1

Trả lời câu hỏi Vận dụng 1 trang 54

Biết rằng hình thang và hình chữ nhật ở Hình 2 có diện tích bằng nhau. Tính chiều cao h của hình thang.

image

Hướng dẫn giải :

Dựa vào công thức diện tích hình chữ nhật S = a.b (a: chiều dài; b: chiều rộng), diện tích hình thang S = \(\frac{1}{2}(a + b).h\) (a và b: chiều dài hai cạnh đáy; h: chiều cao).

Lời giải chi tiết :

Ta có diện tích hình chữ nhật là: \(\sqrt {12} .\sqrt {18} = \sqrt {12.18} = \sqrt {216} = 6\sqrt 6 \)

Ta có diện tích hình thang bằng diện tích hình chữ nhật là: \(6\sqrt 6 \)

Mà diện tích hình thang là: \(\frac{1}{2}(\sqrt {12} + \sqrt {24} ).h\) = \(6\sqrt 6 \)

Suy ra h = \(\frac{{2.6\sqrt 6 }}{{(\sqrt {12} + \sqrt {24} )}} = 12 - 6\sqrt 2 \)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK