1. Căn bậc hai
Khái niệm căn bậc hai
Cho số thực a không âm. Số thực x thỏa mãn \({x^2} = a\) được gọi là một căn bậc hai của a. |
Chú ý:
- Mỗi số dương a có đúng hai căn bậc hai là hai số đối nhau: số dương là \(\sqrt a \) (căn bậc hai số học của a) và số âm là \( - \sqrt a \).
- Số 0 chỉ có đúng một căn bậc hai là chính nó, ta viết \(\sqrt 0 = 0\).
- Số âm không có căn bậc hai.
- Phép toán tìm căn bậc hai số học của số không âm gọi là phép khai căn bậc hai hay phép khai phương (gọi tắt là khai phương).
- Nếu \(a > b > 0\) thì \(\sqrt a > \sqrt b \). Suy ra \( - \sqrt a
Ví dụ:
2. Tính căn bậc hai của một số bằng máy tính cầm tay
Để tính các căn bậc hai của một số \(a > 0\), chỉ cần tính \(\sqrt a \). Có thể dễ dàng làm điều này bằng cách sử dụng MTCT. Sử dụng nút này để bấm căn bậc hai. |
Ví dụ:
Bấm lần lượt các phím ta tính được \(\sqrt {9,45} \approx 3,07\).
Vậy căn bậc hai của 9,45 (làm tròn đến chữ số thập phân thứ hai) là 3,07 và -3,07.
Tính chất của căn bậc hai
\(\sqrt {{a^2}} = \left| a \right|\) với mọi số thực a. |
Ví dụ: \(\sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} = \left| {1 + \sqrt 2 } \right| = 1 + \sqrt 2 \); \(\sqrt {{{\left( { - 3} \right)}^2}} = \left| { - 3} \right| = 3\).
3. Căn thức bậc hai
Khái niệm căn thức bậc hai
Với A là một biểu thức đại số, ta gọi \(\sqrt A \) là căn thức bậc hai của A, còn A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn. |
Ví dụ: \(\sqrt {2x - 1} \), \(\sqrt { - \frac{1}{3}x + 2} \) là các căn thức bậc hai.
Chú ý:
- Ta cũng nói \(\sqrt A \) là một biểu thức. Biểu thức \(\sqrt A \) xác định (hay có nghĩa) khi A nhận giá trị không âm.
- Khi A nhận giá trị không âm nào đó, khai phương giá trị này ta nhận được giá trị tương ứng của biểu thức \(\sqrt A \).
Ví dụ:
+ Căn thức \(\sqrt {2x + 1} \) xác định khi \(2x + 1 \ge 0\) hay \(x \ge - \frac{1}{2}\).
Tại \(x = 4\) thì \(\sqrt {2.4 + 1} = \sqrt 9 = \sqrt {{3^2}} = 3\).
+ Giá trị của biểu thức \(\sqrt {{b^2} - 4ac} \) tại \(a = 3;b = 10;c = 3\) là:
\(\sqrt {{{10}^2} - 4.3.3} = \sqrt {100 - 36} = \sqrt {64} = \sqrt {{8^2}} = 8\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK