Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Chương 7 Định lí Thales Lý thuyết Định lí thalès trong tam giác Toán 8 - Chân trời sáng tạo: Tỉ số của hai đoạn thẳng Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo...

Lý thuyết Định lí thalès trong tam giác Toán 8 - Chân trời sáng tạo: Tỉ số của hai đoạn thẳng Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo...

Phân tích và lời giải lý thuyết Định lí thalès trong tam giác SGK Toán 8 - Chân trời sáng tạo Bài 1. Định lí Thalès trong tam giác. Tỉ số của hai đoạn thẳng Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo

1. Tỉ số của hai đoạn thẳng

Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

Tỉ số của hai đoạn thẳng AB và CD được kí hiệu là: \(\frac{{AB}}{{CD}}\)

Chú ý:

- Để tính tỉ số của hai đoạn thẳng, ta phải đưa chúng về cùng một đơn vị đo.

- Tỉ số của hai đoạn thẳng đó không phụ thuộc vào đơn vị đo độ dài đoạn thẳng.

Đoạn thẳng tỉ lệ

Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A’B’ và C’D’ nếu có tỉ lệ thức: \(\frac{{AB}}{{CD}} = \frac{{A’B}}{{C’D}}\) hay \(\frac{{AB}}{{A’B’}} = \frac{{CD}}{{C’D’}}\)

2. Định lí Thalès

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương đương tỉ lệ.

image

\(\begin{array}{l}\Delta ABC,B’C’//BC(B’ \in AB,C’ \in AC)\\ \Rightarrow \frac{{AB’}}{{AB}} = \frac{{AC’}}{{AC}};\frac{{AB’}}{{B’B}} = \frac{{AC’}}{{C’C}};\frac{{B’B}}{{AB}} = \frac{{C’C}}{{AC}}\end{array}\) 3. Hệ quả của định lí Thalès

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

image

\(\begin{array}{l}\Delta ABC,B’C’//BC(B’ \in AB,C’ \in AC)\\ \Rightarrow \frac{{AB’}}{{AB}} = \frac{{AC’}}{{AC}} = \frac{{B’C’}}{{BC}}\end{array}\)

4. Định lí Thalès đảo

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

image

\(\Delta ABC,B’ \in AB,C’ \in AC,\frac{{AB’}}{{B’B}} = \frac{{AC’}}{{C’C}} \Rightarrow B’C’//BC\)

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK