Cho biết đại lượng \(y\) được tính theo đại lượng \(x\) như sau: \(y = 2x + 3\)
a) Tính \(y\) khi \(x = 4\).
b) Cho \(x\) một giá trị tùy ý, tính giá trị tương ứng của \(y\).
Thay các giá trị của \(x\) và công thức hàm số để tính \(y\).
Với \(x = 4\) ta được. \(y = 2.4 + 3 = 11\)
Với \(x = 6\) ta được. \(y = 2.6 + 3 = 15\)
\(x\) |
1 |
2 |
3 |
4 |
6 |
\(y = 2x + 3\) |
5 |
7 |
9 |
11 |
15 |
a) Các giá trị tương ứng của hai đại lượng \(x\) và \(y\) được cho trong bảng sau:
Đại lượng \(y\) có phải là hàm số của đại lượng \(x\) không?
b) Cho hàm số \(y = f\left( x \right) = {x^2}\)
- Tính \(f\left( 2 \right);f\left( { - 3} \right)\).
- Lập bảng giá trị của hàm số với \(x\) lần lượt bằng \( - 3; - 2; - 1;0;1;2;3\).
a) Dựa vào định nghĩa của hàm số:
Nếu đại lượng \(y\) phụ thuộc vào một đại lượng thay đổi \(x\) sao cho với mỗi giá trị của \(x\) ta luôn xác định được duy nhất một giá trị tương ứng của \(y\) thì \(y\) được gọi làm số của biến số \(x\).
b) Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có \(y = f\left( a \right)\) thì \(f\left( a \right)\) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Đối với hàm số \(y = f\left( x \right) = {x^2}\), khi đó, \(x = a \Rightarrow f\left( a \right) = {a^2}\).
a) Đại lượng \(y\) là hàm số của đại lượng \(x\) vì với mỗi giá trị của \(x\) ta chỉ xác nhận được duy nhất một giá trị \(y\) tương ứng.
b) \(f\left( 2 \right) = {2^2} = 4;f\left( { - 3} \right) = {\left( { - 3} \right)^2} = 9\)
Ta có: \(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)
\(f\left( 0 \right) = {0^2} = 0;f\left( 1 \right) = {1^2} = 1\)
\(f\left( 2 \right) = {2^2} = 4;f\left( 3 \right) = {3^2} = 9\)
\(x\) |
–3 |
–2 |
–1 |
0 |
1 |
2 |
3 |
\(f\left( x \right)\) |
9 |
4 |
1 |
0 |
1 |
4 |
9 |
Cho \(C = f\left( d \right)\)là hàm số mô tả mối quan hệ giữa chu vi \(C\) và đường kính \(d\) của một đường tròn. Tìm công thức \(f\left( d \right)\) và lập bảng giá trị của hàm số ứng với \(d\) lần lượt bằng \(1;2;3;4\) (theo đơn vị cm).
Chu vi đường tròn bằng độ dài đường kính của đường tròn đó nhân với số \(\pi \). Từ đây chúng ta tìm ra công thức của \(f\left( x \right)\).
Ta có: \(C = \pi .d\) trong đó, \(C\) là chu vi đường tròn; \(d\) là đường kính và \(\pi \) là số pi.
Do đó, \(f\left( d \right) = \pi .d\)
Với \(d = 1 \Rightarrow f\left( 1 \right) = \pi .1 = \pi \);
\(d = 2 \Rightarrow f\left( 2 \right) = \pi .2 = 2\pi \);
\(d = 3 \Rightarrow f\left( 3 \right) = \pi .3 = 3\pi \);
\(d = 4 \Rightarrow f\left( 4 \right) = \pi .4 = 4\pi \).
Ta thu được bảng sau:
\(d\) |
1 |
2 |
3 |
4 |
\(f\left( d \right)\) |
\(\pi \) |
\(2\pi \) |
\(3\pi \) |
\(4\pi \) |
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK