Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Chương 5 Hàm số và đồ thị Giải mục 2 trang 17 Toán 8 – Chân trời sáng tạo: Lượng nước \(y\) (tính theo \({m^3}\)) có trong một bể nước sau \(x\) giờ mở vòi cấp nước được...

Giải mục 2 trang 17 Toán 8 – Chân trời sáng tạo: Lượng nước \(y\) (tính theo \({m^3}\)) có trong một bể nước sau \(x\) giờ mở vòi cấp nước được...

Vận dụng kiến thức giải HĐ2, TH2 , Vận dụng 2 mục 2 trang 17 SGK Toán 8 – Chân trời sáng tạo Bài 3. Hàm số bậc nhất y=ax+b(a≠0). Lượng nước (y) (tính theo ({m^3})) có trong một bể nước sau (x) giờ mở vòi cấp nước được cho bởi hàm số (y = 2x + 3)...

Câu hỏi:

Hoạt động2

Lượng nước \(y\) (tính theo \({m^3}\)) có trong một bể nước sau \(x\) giờ mở vòi cấp nước được cho bởi hàm số \(y = 2x + 3\). Tính lượng nước có trong bể sau 0 giờ; 1 giờ; 2 giờ; 3 giờ; 10 giờ và hoàn thành bảng giá trị sau:

image

Hướng dẫn giải :

Lượng nước \(y\) (tính theo \({m^3}\)) có trong một bể nước sau \(x\) giờ mở vòi cấp nước được cho bởi hàm số \(y = 2x + 3\). Do đó, muốn tính lượng nước có trong bể sau \(x = a\) giờ ta tính \(y = f\left( a \right) = 2a + 3\).

Lời giải chi tiết :

+ Với \(x = 0\) giờ \( \Rightarrow y = 2.0 + 3 = 3\left( {{m^3}} \right)\);

+ Với \(x = 1\) giờ \( \Rightarrow y = 2.1 + 3 = 5\left( {{m^3}} \right)\);

+ Với \(x = 2\) giờ \( \Rightarrow y = 2.2 + 3 = 7\left( {{m^3}} \right)\);

+ Với \(x = 3\) giờ \( \Rightarrow y = 2.3 + 3 = 9\left( {{m^3}} \right)\);

+ Với \(x = 10\) giờ \( \Rightarrow y = 2.10 + 3 = 23\left( {{m^3}} \right)\).

Ta có bảng sau

\(x\)

0

1

2

3

10

\(y = f\left( x \right) = 2x + 3\)

3

5

7

9

23


Câu hỏi:

Thực hành2

Lập bảng giá trị của mỗi hàm số bậc nhất sau:

\(y = f\left( x \right) = 4x - 1\) và \(y = h\left( x \right) = - 0,5x + 8\) với \(x\) lần lượt bằng –3; –2; –1; 0; 1; 2; 3.

Hướng dẫn giải :

Giá trị của hàm số \(y = f\left( x \right)\) tại giá trị \(x = a\) là \(f\left( a \right)\).

Giá trị của hàm số \(y = h\left( x \right)\) tại giá trị \(x = a\) là \(h\left( a \right)\).

Lời giải chi tiết :

+ Với \(x = - 3\)\( \Rightarrow f\left( { - 3} \right) = 4.\left( { - 3} \right) - 1 = - 13;g\left( { - 3} \right) = - 0,5.\left( { - 3} \right) + 8 = 9,5\);

+ Với \(x = - 2\)\( \Rightarrow f\left( { - 2} \right) = 4.\left( { - 2} \right) - 1 = - 9;g\left( { - 2} \right) = - 0,5.\left( { - 2} \right) + 8 = 9\);

+ Với \(x = - 1\)\( \Rightarrow f\left( { - 1} \right) = 4.\left( { - 1} \right) - 1 = - 5;g\left( { - 1} \right) = - 0,5.\left( { - 1} \right) + 8 = 8,5\);

+ Với \(x = 0\)\( \Rightarrow f\left( 0 \right) = 4.0 - 1 = - 1;g\left( 0 \right) = - 0,5.0 + 8 = 8\);

+ Với \(x = 1\)\( \Rightarrow f\left( 1 \right) = 4.1 - 1 = 3;g\left( 1 \right) = - 0,5.1 + 8 = 7,5\);

+ Với \(x = 2\)\( \Rightarrow f\left( 2 \right) = 4.2 - 1 = 7;g\left( 2 \right) = - 0,5.2 + 8 = 7\);

+ Với \(x = 3\)\( \Rightarrow f\left( 3 \right) = 4.3 - 1 = 11;g\left( 3 \right) = - 0,5.3 + 8 = 6,5\).

Ta có bảng sau:

\(x\)

–3

–2

–1

0

1

2

3

\(y = f\left( x \right) = 4x - 1\)

–13

–9

–5

–1

3

7

11

\(y = g\left( x \right) = - 0,5x + 8\)

9,5

9

8,5

8

7,5

7

6,5


Câu hỏi:

Vận dụng 2

Một xe khách khởi hành từ bến xe phía Bắc bưu điện thành phố Nha Trang để đi ra thành phố Đà Nẵng với tốc độ 40 km/h (Hình 2).

image

a) Biết rằng bến xe cách bưu điện thành phố Nha Trang 6 km. Sau \(x\) giờ, xe khách cách bưu điện thành phố Nha Trang \(y\)km. Tính \(y\) theo \(x\).

b) Chứng minh rằng \(y\) là một hàm số bậc nhất theo biến \(x\).

c) Hoàn thành bảng giá trị của hàm số ở câu b) và giải thích ý nghĩa của bảng giá trị này:

image

Hướng dẫn giải :

- \(s = vt\) với \(s\)là quãng đường; \(v\) là vận tốc và \(t\) là thời gian;

- Định nghĩa hàm số bậc nhất: Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\) với \(a,b\) là các số cho trước và \(a \ne 0\).

- Giá trị của hàm số \(y = f\left( x \right)\) tại giá trị \(x = a\) là \(f\left( a \right)\).

Lời giải chi tiết :

a) Quãng đường xe khách đi được sau \(x\) giờ với vận tốc 40 km/h là \(40.x\) (km)

Vì ban đầu bến xe cách bưu điện Nha Trang 6 km nên sau \(x\) giờ xe khách cách bưu điện thành phố Nha Trang số km là: \(40x + 6\). Do đó, \(y = 40x + 6\) với \(y\) là số km xe khách cách bưu điện thành phố Nha Trang sau \(x\) giờ.

b) Vì hàm số \(y = 40x + 6\) có dạng \(y = ax + b\) với \(a = 40;b = 6\) nên \(y\) là một hàm số bậc nhất theo biến \(x\).

c)

- Với \(x = 0 \Rightarrow y = f\left( 0 \right) = 40.0 + 6 = 6\);

- Với \(x = 1 \Rightarrow y = f\left( 1 \right) = 40.1 + 6 = 46\);

- Với \(x = 2 \Rightarrow y = f\left( 2 \right) = 40.2 + 6 = 86\);

- Với \(x = 3 \Rightarrow y = f\left( 3 \right) = 40.3 + 6 = 126\);

Ta có bảng sau:

\(x\)

0

1

2

3

\(y\)

6

46

86

126

Bảng này thể hiện khoảng cách của xe khách so với bưu điện Nha Trang sau 0 giờ; 1 giờ; 2 giờ; 3 giờ.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK