Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Chương 1 Biểu thức đại số Lý thuyết Đơn thức và đa thức nhiều biến Toán 8 - Chân trời sáng tạo: Cộng, trừ các đơn thức đồng dạng như thế nào?...

Lý thuyết Đơn thức và đa thức nhiều biến Toán 8 - Chân trời sáng tạo: Cộng, trừ các đơn thức đồng dạng như thế nào?...

Vận dụng kiến thức giải lý thuyết Đơn thức và đa thức nhiều biến SGK Toán 8 - Chân trời sáng tạo Bài 1. Đơn thức và đa thức nhiều biến. Đơn thức Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến,

1. Đơn thức

Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.

Ví dụ: \(1;2xy; - \frac{3}{4}{x^2}y( - 4x);...\) là các đơn thức.

Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến mà mỗi biến chỉ xuất hiện một lần dưới dạng nâng lên lũy thừa với số mũ nguyên dương.

Ví dụ:

\(1;2xy;5{x^2}{y^4}z;...\) là các đơn thức thu gọn.

\(3{x^2}yx; - \frac{3}{4}{x^2}y( - 4x);...\) không phải là các đơn thức thu gọn.

Trong một đơn thức thu gọn, phần số còn gọi là hệ số, phần còn lại gọi là phần biến.

Ví dụ: đơn thức \(3{x^3}.y\) có hệ số là 3, phần biến là \({x^3}.y\).

Tổng số mũ của các biến trong một đơn thức thu gọn với hệ số khác 0 gọi là bậc của đơn thức đó.

Chú ý: + Số thực khác 0 là đơn thức bậc không.

+ Số 0 được gọi là đơn thức không có bậc.

Ví dụ: \(2xy\) có bậc là \(1 + 1 = 2\)

\(5{x^2}{y^4}z\) có bậc là \(2 + 4 + 1 = 7\)

Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.

Ví dụ:

Hai đơn thức \(5{x^2}{y^4}z\) và \( - \frac{1}{3}{x^2}{y^4}z\) có hệ số khác 0 và có cùng phần biến nên chúng là hai đơn thức đồng dạng.

Hai đơn thức \(5{x^2}{y^4}z\) và \(5x{y^2}z\) không có cùng phần biến nên chúng không phải là hai đơn thức đồng dạng.

Cộng, trừ các đơn thức đồng dạng như thế nào?

Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.

Ví dụ:

\(\begin{array}{l}2{x^3}{y^2} + 4{x^3}{y^2} = 6{x^3}{y^2}\\4a{y^2} - 3a{y^2} = a{y^2}\end{array}\)

2. Đa thức

Đa thức là một tổng của những đơn thức.

Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.

Chú ý: mỗi đơn thức được gọi là một đa thức (chỉ chứa một hạng tử).

Số 0 được gọi là đơn thức không, cũng gọi là đa thức không.

Ví dụ: \({x^2} - 4x + 3;{x^2}\; + {\rm{ }}3xy{z^2}\; - {\rm{ }}yz{\rm{ }} + {\rm{ }}1;\left( {x{\rm{ }} + {\rm{ }}3y} \right){\rm{ }} + \left( {2x{\rm{ }}-{\rm{ }}y} \right)\) là đa thức.

\(\frac{{x + y}}{{x - y}},\frac{{{x^2} + 2}}{{{x^2} - {y^2}}}\) không phải là đa thức.

\({x^2} - 4x + 3\) có 3 hạng tử.

\({x^2}\; + {\rm{ }}3xy{z^2}\; - {\rm{ }}yz{\rm{ }} + {\rm{ }}1\) có 4 hạng tử.

Đa thức thu gọn là gì?

Đa thức thu gọn là đa thức không chưa hai hạng tử nào đồng dạng.

Thu gọn đa thức như thế nào?

Biến đổi một đa thức thành đa thức thu gọn gọi là thu gọn đa thức đó.

Để thu gọn một đa thức, ta nhóm các hạng tử đồng dạng với nhau và cộng các hạng tử đồng dạng đó với nhau.

Ví dụ:

\(\begin{array}{l}A = {x^3} - 2{x^2}y - {x^2}y + 3x{y^2} - {y^3}\\\,\,\,\,\, = {x^3} - 3{x^2}y - 3x{y^2} - {y^3}\end{array}\)

Chú ý: Bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức gọi là bậc của đa thức đó.

Tính giá trị của đa thức như thế nào?

Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện phép tính.

Ví dụ: Giá trị của biểu thức \({x^2} - 4xy + 3{y^2}\) tại x = 2, y = 1 là: \({2^2} - 4.2.1 + {3.1^2} = - 1\)

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK