Hình chữ nhật \(A\) có chiều rộng \(2x\) (cm), chiều dài gấp \(k\) (\(k > 1\) lần chiều rộng. Hình chữ nhật \(B\) có chiều dài \(3x\) (cm). Muốn hai hình chữ nhật này có diện tích bằng nhau thì \(B\) phải có chiều rộng bằng bao nhiêu?
Áp dụng công thức tính diện tích hình chữ nhật.
Áp dụng quy tắc nhân đơn thức với đơn thức, chia đơn thức cho đơn thức.
Diện tích hình chữ nhật \(A\) là: \(2kx.2x = 4k{x^2}\) \(c{m^2}\)
Muốn hai hình chữ nhật \(A\) và \(B\) có diện tích bằng nhau thì chiều rộng hình chữ nhật \(B\) là:
\(4k{x^2}:\left( {3x} \right) = \left( {4:3} \right).\left( {{x^2}:x} \right).k = \frac{4}{3}xk\) (cm)
Thực hiện phép chia \(8{x^4}{y^5}{z^3}\) cho \(2{x^3}{y^4}z\).
Áp dụng quy tắc chia đơn thức cho đơn thức.
\(8{x^4}{y^5}{z^3}:\left( {2{x^3}{y^4}z} \right) = \left( {8:2} \right).\left( {{x^4}:{x^3}} \right).\left( {{y^5}:{y^4}} \right).\left( {{z^3}:z} \right) = 4xy{z^2}\)
Tính diện tích đáy của hình hộp chữ nhật có thể tích \(V = 12{x^2}y\) và chiều cao bằng \(3y\).
Áp dụng quy tắc chia đơn thức cho đơn thức.
Áp dụng công thức tính diện tích đáy: \(S = V:h\) trong đó \(S\), \(V\), \(h\) lần lượt là diện tích đáy, thể tích, chiều cao của hình hộp chữ nhật.
Diện tích đáy của hình hộp chữ nhật là: \(12{x^2}y:\left( {3y} \right) = \left( {12:3} \right).\left( {y:y} \right).{x^2} = 4{x^2}\)
Một bức tường được trang trí bởi hai tấm giấy dán có cùng chiều cao \(2x\) (m) và có diện tích lần lượt là \(2{x^2}\) (\({m^2}\)) và \(5xy\) (\({m^2}\)).
a) Tính chiều rộng của mỗi tấm giấy, từ đó tìm chiều rộng của bức tường.
b) Từ kết quả trên, có thể biết được kết quả của phép chia đa thức \(A = 2{x^2} + 5xy\) cho đơn thức \(B = 2x\) không? Hãy giải thích.
Áp dụng quy tắc chia đơn thức cho đơn thức.
a) Chiều rộng của tấm giấy thứ nhất là: \(2{x^2}:\left( {2x} \right) = \left( {2:2} \right).\left( {{x^2}:x} \right) = x\) (m)
Chiều rộng tấm giấy thứ hai là: \(5xy:\left( {2x} \right) = \left( {5:2} \right).\left( {x:x} \right).y = \frac{5}{2}y\) (m)
Chiều rộng của bức tường là: \(x + \frac{5}{2}y\) (m)
b) Kết quả của phép chia đa thức \(A = 2{x^2} + 5xy\) cho đa thức \(B = 2x\) là \(x + \frac{5}{2}y\)
Vì \(\left( {x + \frac{5}{2}y} \right).\left( {2x} \right) = x.2x + \frac{5}{2}y.2x = 2{x^2} + 5xy\)
Thực hiện các phép chia:
a) \(\left( {5ab - 2{a^2}} \right):a\)
b) \(\left( {6{x^2}{y^2} - x{y^2} + 3{x^2}y} \right): - 3xy\)
Áp dụng quy tắc chia đa thức cho đơn thức.
a) \(\left( {5ab - 2{a^2}} \right):a\)
\( = \left( {5ab:a} \right) - \left( {2{a^2}:a} \right)\)
\( = 5b - 2a\)
b) \(\left( {6{x^2}{y^2} - x{y^2} + 3{x^2}y} \right): - 3xy\)
\( = \left[ {6{x^2}{y^2}:\left( { - 3xy} \right)} \right] - \left[ {x{y^2}:\left( { - 3xy} \right)} \right] + \left[ {3{x^2}y:\left( { - 3xy} \right)} \right]\)
\( = - 2xy - \left( { - \frac{1}{3}y} \right) + \left( { - x} \right)\)
\( = - 2xy + \frac{1}{3}y - x\)
Tính chiều cao của hình hộp chữ nhật có thể tích \(V = 6{x^2}y - 8x{y^2}\) và diện tích đáy \(S = 2xy\).
Áp dụng công thức tính chiều cao hình hộp chữ nhật: \(h = V:S\) trong đó \(S\), \(V\), \(h\) lần lượt là diện tích đáy, thể tích, chiều cao của hình hộp chữ nhật.
Áp dụng quy tắc chia đa thức cho đơn thức.
Chiều cao của hình hộp chữ nhật là:
\(\left( {6{x^2}y - 8x{y^2}} \right):\left( {2xy} \right) = \left[ {6{x^2}y:\left( {2xy} \right)} \right] - \left[ {8x{y^2}:\left( {2xy} \right)} \right]\)\( = 3x - 4y\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK