Xét các phân thức \(P = \dfrac{{{x^2}y}}{{x{y^2}}}\), \(Q = \dfrac{x}{y}\), \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}}\) .
a) Các phân thức trên có bằng nhau không? Tại sao?
b) Có thể biến đổi như thế nào nếu chuyển \(Q\) thành \(P\) và \(R\) thành \(Q\).
a) Sử dụng kiến thức: \(\dfrac{A}{B}\) \( = \dfrac{C}{D}\) nếu \(AD = BC\) để kiểm tra xem các phân thức trên có bằng nhau hay không?
b) Nhân hoặc cả tử và mẫu của đa thức \(Q\) cho \(xy\); chia cả tử và mẫu của đa thức của \(R\) cho \(x + y\)
a) Ta có:
\({x^2}y.y = {x^2}{y^2}\)
\(x{y^2}.x = {x^2}{y^2}\)
Do đó\({x^2}y.y = x{y^2}.x\)
Vậy \(P = Q\) (1)
Ta có:
\(x.\left( {xy + {y^2}} \right) = {x^2}y + x{y^2}\)
\(y.\left( {{x^2} + xy} \right) = {x^2}y + x{y^2}\)
Do đó \(x.\left( {xy + {y^2}} \right) = y.\left( {{x^2} + xy} \right)\)
Vậy \(Q = R\) (2)
Từ (1) và (2) suy ra \(P = Q = R\)
b) Nhân cả tử và mẫu của phân thức \(Q\) với \(xy\) để chuyển \(Q\) thành \(P\), ta được: \(Q = \dfrac{x}{y} = \dfrac{{x.xy}}{{y.xy}} = \dfrac{{{x^2}y}}{{x{y^2}}}\)
Phân thức cả tử và mẫu của phân thức \(R\) thành nhân tử rồi chia cả tử và mẫu của phân thức \(R\) cho nhân tử chung \(x + y\) để chuyển \(R\) thành \(Q\), ta được: \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}} = \dfrac{{x.\left( {x + y} \right)}}{{y.\left( {x + y} \right)}} = \dfrac{{x.\left( {x + y} \right):\left( {x + y} \right)}}{{y.\left( {x + y} \right):\left( {x + y} \right)}} = \dfrac{x}{y}\)
Chứng tỏ hai phân thức \(\dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}}\) và \(\dfrac{{a - b}}{{ab}}\) bằng nhau theo hai cách khác nhau.
Phân tích tử và mẫu của phân thức \(\dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}}\) thành nhân tử để tìm nhân tử chung. Sau đó chia cả tử và mẫu cho nhân tử chung.
Nhân cả tử và mẫu của phân thức \(\dfrac{{a - b}}{{ab}}\) với \(a + b\)
Cách 1: \(\dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}} = \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{ab\left( {a + b} \right)}} = \dfrac{{a - b}}{{ab}}\)
Cách 2: \(\dfrac{{a - b}}{{ab}} = \dfrac{{\left( {a - b} \right).\left( {a + b} \right)}}{{ab.\left( {a + b} \right)}} = \dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}}\)
Vậy hai phân thức đã cho bằng nhau
Rút gọn các phân thức sau:
a) \(\dfrac{{3{x^2} + 6xy}}{{6{x^2}}}\)
b) \(\dfrac{{2{x^2} - {x^3}}}{{{x^2} - 4}}\)
c) \(\dfrac{{x + 1}}{{{x^3} + 1}}\)
- Phân tích tử và mẫu thành nhân tử để tìm nhân tử chung
- Chia cả tử và mẫu cho nhân tử chung để rút gọn phân thức
a) \(\dfrac{{3{x^2} + 6xy}}{{6{x^2}}}\) \( = \dfrac{{3x.\left( {x + 2y} \right)}}{{3x.2x}} = \dfrac{{x + 2y}}{{2x}}\)
b) \(\dfrac{{2{x^2} - {x^3}}}{{{x^2} - 4}}\)\( = \dfrac{{{x^2}.\left( {2 - x} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \dfrac{{ - {x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \dfrac{{ - {x^2}}}{{x + 2}}\)
c) \(\dfrac{{x + 1}}{{{x^3} + 1}}\) \( = \dfrac{{x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{1}{{{x^2} - x + 1}}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK