Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Chương 1 Biểu thức đại số Giải mục 2 trang 32, 33, 34 Toán 8 tập 1 – Chân trời sáng tạo: Cho hai phân thức \(A = \dfrac{{a + b}}{{ab}}\) và \(B = \dfrac{{a - b}}{{{a^2}}}\) Tìm đa thức...

Giải mục 2 trang 32, 33, 34 Toán 8 tập 1 – Chân trời sáng tạo: Cho hai phân thức \(A = \dfrac{{a + b}}{{ab}}\) và \(B = \dfrac{{a - b}}{{{a^2}}}\) Tìm đa thức...

Giải HĐ2, Thực hành 2 , Thực hành 3, Vận dụng mục 2 trang 32, 33, 34 SGK Toán 8 tập 1 – Chân trời sáng tạo Bài 6. Cộng - trừ phân thức. Cho hai phân thức (A = dfrac{{a + b}}{{ab}}) và (B = dfrac{{a - b}}{{{a^2}}}) a) Tìm đa thức thích hợp thay vào mỗi sau đây...

Câu hỏi:

Hoạt động2

Cho hai phân thức \(A = \dfrac{{a + b}}{{ab}}\) và \(B = \dfrac{{a - b}}{{{a^2}}}\)

a) Tìm đa thức thích hợp thay vào mỗi sau đây:

\(\dfrac{{a + b}}{{ab}}\);

\(\dfrac{{a - b}}{{{a^2}}}\)

b) Sử dụng kết quả trên, tính \(A + B\) và \(A - B\)

Hướng dẫn giải :

a) Quy đồng mẫu thức của phân thức ở vế trái để tìm được đa thức thay vào dấu

b) Sử dụng quy tắc cộng, trừ phân thức

Lời giải chi tiết :

a) ĐKXĐ: \(a \ne 0;\;b \ne 0\)

\(\dfrac{{a + b}}{{ab}}\)\( = \dfrac{{\left( {a + b} \right)a}}{{ab.a}} = \dfrac{{{a^2} + ab}}{{{a^2}b}}\) . Vậy đa thức cần tìm là \({a^2} + ab\)

\(\dfrac{{a - b}}{{{a^2}}}\)\( = \dfrac{{\left( {a - b} \right)b}}{{{a^2}b}} = \dfrac{{ab - {b^2}}}{{{a^2}b}}\). Vậy đa thức cần tìm là \(ab - {b^2}\)

b) \(A + B = \dfrac{{a + b}}{{ab}} + \dfrac{{a - b}}{{{a^2}}} = \dfrac{{{a^2} + ab}}{{{a^2}b}} + \dfrac{{ab - {b^2}}}{{{a^2}b}} = \dfrac{{{a^2} + ab + ab - {b^2}}}{{{a^2}b}} = \dfrac{{{a^2} + 2ab - {b^2}}}{{{a^2}b}}\)

\(A - B = \dfrac{{a + b}}{{ab}} - \dfrac{{a - b}}{{{a^2}}} = \dfrac{{{a^2} + ab}}{{{a^2}b}} - \dfrac{{ab - {b^2}}}{{{a^2}b}} = \dfrac{{{a^2} + ab - ab + {b^2}}}{{{a^2}b}} = \dfrac{{{a^2} + {b^2}}}{{{a^2}b}}\)


Câu hỏi:

Thực hành 2

Thực hiện các phép cộng, trừ phân thức sau:

a) \(\dfrac{a}{{a - 3}} - \dfrac{3}{{a + 3}}\)

b) \(\dfrac{1}{{2x}} + \dfrac{2}{{{x^2}}}\)

c) \(\dfrac{4}{{{x^2} - 1}} - \dfrac{2}{{{x^2} + x}}\)

Hướng dẫn giải :

Quy đồng mẫu thức các phân thức rồi thực hiện hiện phép tính cộng, trừ phân thức

Lời giải chi tiết :

a) ĐKXĐ: \(a \ne \pm 3\)

\(\dfrac{a}{{a - 3}} - \dfrac{3}{{a + 3}}\) \( = \dfrac{{a\left( {a + 3} \right)}}{{\left( {a - 3} \right)\left( {a + 3} \right)}} - \dfrac{{3\left( {a - 3} \right)}}{{\left( {a - 3} \right)\left( {a + 3} \right)}} = \dfrac{{{a^2} + 3a}}{{\left( {a - 3} \right)\left( {a + 3} \right)}} - \dfrac{{3a - 9}}{{\left( {a - 3} \right)\left( {a - 3} \right)}}\)

\( = \dfrac{{{a^2} + 3a - 3a + 9}}{{\left( {a - 3} \right)\left( {a + 3} \right)}} = \dfrac{{{a^2} + 9}}{{{a^2} - 9}}\)

b) ĐKXĐ: \(x \ne 0\)

\(\dfrac{1}{{2x}} + \dfrac{2}{{{x^2}}}\) \( = \dfrac{x}{{2{x^2}}} + \dfrac{4}{{2{x^2}}} = \dfrac{{x + 4}}{{2{x^2}}}\)

c) ĐKXĐ: \(x \ne 0;\;x \ne \pm 1\)

\(\dfrac{4}{{{x^2} - 1}} - \dfrac{2}{{{x^2} + x}}\) \( = \dfrac{4}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{2}{{x\left( {x + 1} \right)}} = \dfrac{{4x}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{2\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}\) \( = \dfrac{{4x}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{2x - 2}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}\) \( = \dfrac{{4x - 2x + 2}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{2x + 2}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{2\left( {x + 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{2}{{x\left( {x - 1} \right)}}\)


Câu hỏi:

Thực hành 3

Thực hiện phép tính: \(\dfrac{x}{{x + y}} + \dfrac{{2xy}}{{{x^2} - {y^2}}} - \dfrac{y}{{x + y}}\)

Hướng dẫn giải :

- Phân tích mẫu thành nhân tử để tìm mẫu thức chung

- Quy đồng mẫu thức rồi thực hiện phép tính

Lời giải chi tiết :

ĐKXĐ: \(x \ne \pm y\)

\(\dfrac{x}{{x + y}} + \dfrac{{2xy}}{{{x^2} - {y^2}}} - \dfrac{y}{{x + y}} = \dfrac{x}{{x + y}} + \dfrac{{2xy}}{{\left( {x - y} \right)\left( {x + y} \right)}} - \dfrac{y}{{x + y}}\) \( = \dfrac{{x\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \dfrac{{2xy}}{{\left( {x - y} \right)\left( {x + y} \right)}} - \dfrac{{y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}}\) \( = \dfrac{{{x^2} - xy + 2xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \dfrac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\)


Câu hỏi:

Vận dụng

Viết biểu thức tính tổng thời gian đi và về, chênh lệch thời gian giữa đi và về của đội đua thuyền ở tình huống trong câu hỏi mở đầu (trang 31). Tính giá trị của các đại lượng này khi \(x = 6\)km/h.

image

Hướng dẫn giải :

- Viết biểu thức tính thời gian đi xuôi dòng từ A đến B, Thời gian đi ngược dòng từ B về A

- Tính hiệu thời gian đi từ B về A và thời gian đi từ A dến B

Lời giải chi tiết :

Thời gian đội đi xuôi dòng từ A đến B là: \(\dfrac{3}{{x + 1}}\) (giờ)

Thời gian đội đi ngược dòng từ B về A là: \(\dfrac{3}{{x - 1}}\) (giờ)

Điều kiện: \(x \ne \pm 1\)

Thời gian thi của đội là:

\(\dfrac{3}{{x + 1}} + \dfrac{3}{{x - 1}} = \dfrac{{3\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \dfrac{{3\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{{3x - 3 + 3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{6x}}{{{x^2} - 1}}\) (giờ)

Chênh lệch giữa thời gian đi và bề của đội là: \(\dfrac{3}{{x - 1}} - \dfrac{3}{{x + 1}} = \dfrac{{3\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{3x + 3 - 3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{6}{{{x^2} - 1}}\) (giờ)

Khi \(x = 6\) (thỏa mãn điều kiện) thì thời gian thi của đội là: \(\dfrac{{6.6}}{{{6^2} - 1}} = \dfrac{{36}}{{36 - 1}} = \dfrac{{36}}{{35}}\) (giờ)

Khi \(x = 6\) (thỏa mãn điều kiện) thì chênh lệch giữa thời gian đi và về của đội là: \(\dfrac{6}{{{6^2} - 1}} = \dfrac{6}{{36 - 1}} = \dfrac{6}{{35}}\) (giờ)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK