HĐ 2
Hãy so sánh tổng độ dài hai cạnh của tam giác trong Hình 4 với độ dài cạnh còn lại.
Ta so sánh tổng 2 cạnh trong tam giác với cạnh còn lại.
Trong tam giác ABC, xét tổng độ dài 2 cạnh so với cạnh còn lại :
\(\begin{array}{l}AB + AC = 9 + 5 > BC = 12\\AB + BC = 9 + 12 > AC = 5\\AC + BC = 12 + 5 > AB = 9\end{array}\)
Vậy tổng độ dài 2 cạnh trong 1 tam giác luôn lớn hơn độ dài cạnh còn lại .
Thực hành 2
Trong các bộ ba độ dài đoạn thẳng dưới đây, bộ ba nào có thể là độ dài ba cạnh của tam giác?
a) 7cm; 8cm; 11cm
b) 7cm; 9cm; 16cm
c) 8cm; 9cm; 16cm
So sánh độ dài cạnh lớn nhất với tổng độ dài 2 cạnh còn lại
a) Vì 7 + 8 > 11
Nên a là một tam giác theo bất đẳng thức tam giác
b) Vì 7 + 9 = 16 không thỏa mãn bất đẳng thức tam giác nên b không phải là tam giác
c) Vì 8 + 9 > 16
Nên c là một tam giác theo bất đẳng thức tam giác
Vận dụng
Cho tam giác ABC với độ dài ba cạnh là ba số nguyên. Nếu biết AB = 5cm AC = 3cm thì cạnh BC có thể có độ dài là bao nhiêu xăngtimét?
Sử dụng bất đẳng thức tam giác: Trong một tam giác, độ dài của một cạnh luôn nhỏ hơn tổng độ dài hai cạnh còn lại và lớn hơn hiệu độ dài 2 cạnh còn lại: b – c < a < b + c ( với a, b, c là độ dài 3 cạnh của tam giác)
Kết hợp điều kiện độ dài cạnh BC là số nguyên
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
5 - 3 < BC < 5 + 3
2 < BC < 8
Mà BC là số nguyên
\(\Rightarrow BC \in\) {3;4;5;6;7} cm
Vậy độ dài BC có thể là 3 cm, 4 cm, 5 cm, 6 cm hoặc 7 cm.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK