Trang chủ Lớp 6 Toán 6 Sách Chân trời sáng tạo Bài 4: Phép cộng và phép trừ phân số Lý thuyết Phép cộng và phép trừ phân số Toán 6 Chân trời sáng tạo: I. Phép cộng hai phân sốCộng hai phân số cùng mẫu: Muốn cộng hai phân số cùng mẫu...

Lý thuyết Phép cộng và phép trừ phân số Toán 6 Chân trời sáng tạo: I. Phép cộng hai phân sốCộng hai phân số cùng mẫu: Muốn cộng hai phân số cùng mẫu...

Lời giải bài tập, câu hỏi lý thuyết Phép cộng và phép trừ phân số Toán 6 Chân trời sáng tạo - Bài 4. Phép cộng và phép trừ phân số. Lý thuyết Phép cộng và phép trừ phân số Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ...
I. Phép cộng hai phân số

a) Cộng hai phân số cùng mẫu:

Muốn cộng hai phân số cùng mẫu, ta cộng các tử và giữ nguyên mẫu.

$\dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}$ $(m \ne 0)$

Ví dụ:

$\dfrac{8}{5} + \dfrac{7}{5} = \dfrac{{8 + 7}}{5} = \dfrac{{15}}{5} = 3$

b) Cộng hai phân số khác mẫu:

Muốn cộng hai phân số khác mẫu, ta viết chúng dưới dạng hai phân số cùng mẫu rồi cộng các tử với nhau và giữ nguyên mẫu chung.

Ví dụ:

$\dfrac{3}{2} + \dfrac{{ - 3}}{5} = \dfrac{{15}}{{10}} + \dfrac{{ - 6}}{{10}} = \dfrac{{15 + \left( { - 6} \right)}}{{10}} = \dfrac{9}{{10}}$.

II. Một số tính chất của phép cộng phân số

+ Tính chất giao hoán: $\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}$

+ Tính chất kết hợp:

$\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{p}{q} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{p}{q}} \right)$

+ Cộng với số $0$ : $\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}$

Ví dụ:

- Tính chất giao hoán

$\dfrac{1}{2} + \dfrac{3}{2} = \dfrac{3}{2} + \dfrac{1}{2}$$ = \dfrac{4}{2} = 2$

- Tính chất kết hợp:

$\left( {\dfrac{1}{2} + \dfrac{3}{4}} \right) + \dfrac{1}{4}$$ = \dfrac{1}{2} + \left( {\dfrac{3}{4} + \dfrac{1}{4}} \right)$$ = \dfrac{1}{2} + 1 = \dfrac{3}{2}$

- Tính chất cộng với số 0:

$\dfrac{1}{4} + 0 = 0 + \dfrac{1}{4} = \dfrac{1}{4}$.

III. Số đối của một phân số

Hai số gọi là đối nhau nếu tổng của chúng bằng $0$. Kí hiệu số đối của phân số $\dfrac{a}{b}$ là $ - \dfrac{a}{b}$.

$\dfrac{a}{b} + \left( { - \dfrac{a}{b}} \right) = 0$.

Ví dụ:

$\dfrac{{ - 1}}{5}$ là số đối của $\dfrac{1}{5}$, vì $\dfrac{{ - 1}}{5} + \dfrac{1}{5} = 0$.

Chú ý: Số đối của $0$ là $0$.

IV. Phép trừ hai phân số

- Muốn trừ hai phân số cùng mẫu ta lấy tử của phân số thứ nhất trừ đi tử của phân số thứ hai và giữ nguyên mẫu.

$\dfrac{a}{m} - \dfrac{b}{m} = \dfrac{{a - b}}{m}$

- Muốn trừ hai phân số khác mẫu, ta quy đồng hai phân số, rồi trừ hai phân số đó.

Ví dụ:

a) $\dfrac{2}{7} - \dfrac{5}{7} = \dfrac{{2 - 5}}{7} = \dfrac{{ - 3}}{7}$

b) $\dfrac{1}{6} - \dfrac{1}{2} = \dfrac{1}{6} + \left( { - \dfrac{1}{2}} \right) = \dfrac{1}{6} + \left( {\dfrac{{ - 3}}{6}} \right) = \dfrac{{1 + \left( { - 3} \right)}}{6} = \dfrac{{ - 2}}{6} = \dfrac{{ - 1}}{3}.$

Nhận xét:Muốn trừ một phân số cho một phân số, ta có thể cộng số bị trừ với số đối của số trừ.

Ví dụ:

$\dfrac{5}{6} - \dfrac{{ - 1}}{3} = \dfrac{5}{6} + \dfrac{1}{3} = \dfrac{5}{6} + \dfrac{2}{6} = \dfrac{7}{6}$.

CÁC DẠNG TOÁN VỀ PHÉP CỘNG VÀ PHÉP TRỪ PHÂN SỐI. Tìm số đối của một số cho trước

Muốn tìm số đối của một số khác $0$, ta chỉ cần đổi dấu của nó.

Chú ý: $ - \dfrac{a}{b} = \dfrac{{ - a}}{b} = \dfrac{a}{{ - b}}$

II. Thực hiện phép cộng, trừ các phân số

Áp dụng các qui tắc cộng (trừ) hai phân số cùng mẫu, cộng (trừ) hai phân số không cùng mẫu.

Chú ý:

+ Nên rút gọn phân số (nếu có phân số chưa tối giản) trước khi cộng (trừ).

+ Rút gọn kết quả (nếu có thể).

III. Tìm số chưa biết trong một tổng, một hiệu

Chú ý quan hệ giữa các số hạng trong một tổng, một hiệu:+ Một số hạng bằng tổng trừ đi số hạng kia+ Số bị trừ bằng hiệu cộng với số trừ+ Số trừ bằng số bị trừ trừ đi hiệu.

IV. Bài toán dẫn đến phép cộng, phép trừ phân số

Bước 1: Căn cứ vào đề bài, lập các phép cộng, phép trừ phân số thích hợp.

Bước 2: Thực hiện phép tính cộng (trừ)

Bước 3: Kết luận.

V. Thực hiện dãy phép tính cộng, trừ các phân số

Ta thực hiện theo các bước sau:+ Viết phân số có mẫu âm thành phân số bằng nó và có mẫu dương+ Thay phép trừ bằng phép cộng với số đối+ Quy đồng mẫu các phân số rồi thực hiện cộng các tử số+ Rút gọn kết quả (nếu có thể)Tùy theo đặc điểm của các phân số ta có thể sử dụng các tính chất của phép cộng phân số để việc tính toán được thuận lợi và nhanh chóng.

VI. So sánh phân số bằng cách sử dụng phép cộng phân số thích hợp

Trong một số trường hợp để so sánh hai phân số, ta có thể cộng chúng với hai phân số thích hợp có cùng tử. So sánh hai phân số được cộng vào này sẽ giúp ta so sánh được hai phân số đã cho.Khi so sánh hai phân số cùng tử cần chú ý:- Trong hai phân số có cùng tử dương, phân số nào có mẫu lớn hơn thì phân số đó nhỏ hơn- Trong hai phân số có cùng tử âm, phân số nào có mẫu lớn hơn thì lớn hơn.

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 6

Lớp 6 - Năm đầu tiên của cấp trung học cơ sở, mọi thứ đều mới mẻ và đầy thách thức. Hãy tự tin làm quen với bạn bè mới và đón nhận những cơ hội học tập thú vị!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK