Với \(a,b \in \mathbb{Z},\,b \ne 0\), ta gọi \(\dfrac{a}{b}\) là một phân số, trong đó a là tử số (tử) và b là mẫu số (mẫu) của phân số.
Ví dụ 1:
\(\dfrac{2}{5};\,\dfrac{{ - 3}}{4};\dfrac{{ - 1}}{{ - 7}};...\) là những phân số
Ví dụ 2:
Phân số \(\dfrac{{ - 4}}{7}\) đọc là: Âm bốn phần bảy, có tử số là \( - 4\) và mẫu số là \(7\).
Chú ý:
+ Phân số âm: là phân số có tử và mẫu là các số nguyên trái dấu.
+ Phân số dương: là phân số có tử và mẫu là các số nguyên cùng dấu.
II. Phân số bằng nhau
a) Khái niệm hai phân số bằng nhau
Hai phân số bằng nhau nếu chúng cùng biểu diễn một giá trị.
b) Quy tắc bằng nhau của hai phân số
Xét hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)
Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\). Ngược lại, nếu \(a.d = b.c\) thì \(\dfrac{a}{b} = \dfrac{c}{d}\)
Ví dụ:
Do \(3.5 = ( - 5).( - 3)\) nên \(\dfrac{3}{{ - 5}} = \dfrac{{ - 3}}{5}\)
Do \(2.\left( { - 3} \right) \ne 5.7\) nên \(\dfrac{2}{5} \ne \dfrac{7}{{ - 3}}\)
Chú ý:
Với \(a,b\) là hai số nguyên và \(b \ne 0\), ta luôn có: \(\dfrac{a}{{ - b}} = \dfrac{{ - a}}{b}\) và \(\dfrac{{ - a}}{{ - b}} = \dfrac{a}{b}\).
III. Biểu diễn số nguyên ở dạng phân số
Mỗi số nguyên \(n\) có thể coi là phân số \(\dfrac{n}{1}\) (Viết \(\dfrac{n}{1} = n\)). Khi đó số nguyên \(n\) được biểu diễn diễn ở dạng phân số \(\dfrac{n}{1}\).
Ví dụ:
\(\dfrac{{ - 14}}{1} = - 14;\,\,\,\,\,52 = \dfrac{{52}}{1}\).
CÁC DẠNG TOÁN VỀ PHÂN SỐ VỚI TỬ SỐ VÀ MẪU SỐ NGUYÊN
I. Nhận biết phân số, đọc các phân số, mô tả các bài toán thực tiễn qua phân số
- Sử dụng định nghĩa phân số:
Người ta gọi \(\dfrac{a}{b}\) với \(a,b \in Z;b \ne 0\) là một phân số, \(a\) là tử số (tử), \(b\) là mẫu số (mẫu) của phân số.
- Quan sát hình vẽ hoặc dựa vào các dự kiện đề bài ra để mô tả các bài toán thực tiễn qua phân số. Ý nghĩa tử số và mẫu số của phân số:+) Mẫu số cho biết đơn vị được chia ra làm mấy phần bằng nhau +) Tử số cho biết số phần bằng nhau đã lấy.
Chú ý: Mẫu của phân số phải khác 0.
II. Nhận biết các cặp phân số bằng nhau, không bằng nhau
- Nếu \(a.d = b.c\) thì \(\dfrac{a}{b} = \dfrac{c}{d}\);
- Nếu \(a.d \ne b.c\) thì \(\dfrac{a}{b} \ne \)\(\dfrac{c}{d}\);
III. Tìm số chưa biết trong đẳng thức của hai phân số
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) nên \(a.d = b.c\) (định nghĩa hai phân số bằng nhau)
Suy ra \(a = \dfrac{{b.c}}{d}\) , \(d = \dfrac{{b.c}}{a}\) , \(b = \dfrac{{a.d}}{c}\) , \(c = \dfrac{{a.d}}{b}.\)
IV. Lập các cặp phân số bằng nhau từ một đẳng thức cho trước
Từ định nghĩa phân số bằng nhau ta có:
\(a.d = b.c\) \( \Rightarrow \) \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) ;
\(a.d = c.b\) \( \Rightarrow \) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) ;
\(d.a = b.c\) \( \Rightarrow \) \(\dfrac{d}{b}\) = \(\dfrac{c}{a}\) ;
\(d.a = c.b\) \( \Rightarrow \) \(\dfrac{d}{c}\) = \(\dfrac{b}{a}\) ;
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Năm đầu tiên của cấp trung học cơ sở, mọi thứ đều mới mẻ và đầy thách thức. Hãy tự tin làm quen với bạn bè mới và đón nhận những cơ hội học tập thú vị!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK