Trang chủ Lớp 6 Toán 6 Sách Chân trời sáng tạo Chương 2: Số Nguyên Các dạng toán về phép nhân và phép chia số nguyên: Dấu của kết quả phép nhân \(( - 2). ( - 2). ( - 2). ( - 2). ( - 2)\) mang dấu?...

Các dạng toán về phép nhân và phép chia số nguyên: Dấu của kết quả phép nhân \(( - 2). ( - 2). ( - 2). ( - 2). ( - 2)\) mang dấu?...

Lời giải bài tập, câu hỏi các dạng toán về phép nhân và phép chia số nguyên - Bài 4. Phép nhân và phép chia hai số nguyên. Các dạng toán về phép nhân và phép chia số nguyên...Dấu của kết quả phép nhân \(( - 2).( - 2).( - 2).( - 2).( - 2)\) mang dấu?

I. Thực hiện phép tính nhân, chia hai số nguyên

Khi thực hiện phép tính ta áp dụng các quy tắc sau:

- Quy tắc nhân hai số nguyên

Với \(m,n \in {\mathbb{N}^*}\), ta có:

\(m\left( { - n} \right) = \left( { - n} \right)m = - (m.m)\)

\(\left( { - m} \right)\left( { - n} \right) = \left( { - n} \right)\left( { - m} \right) = mn\)

- Quy tắc dấu của thương:

\(\begin{array}{l}\left( + \right):\left( + \right) = \left( + \right)\\\left( - \right):\left( - \right) = \left( + \right)\\\left( + \right):\left( - \right) = \left( - \right)\\\left( - \right):\left( + \right) = \left( - \right)\end{array}\)

Chú ý:

+ Nếu đổi dấu một thừa số thì tích $ab$ đổi dấu.

+ Nếu đổi dấu hai thừa số thì tích $ab$ không thay đổi.

Chú ý trên vẫn đúng với phép chia.

II. Áp dụng tính chất của phép nhân để tính nhanh

Phương pháp:

Bước 1: Quan sát biểu thức và nhận xét về tính chất của các số hạng và thừa số

Bước 2: Áp dụng các tính chất giao hoán, kết hợp và tính chất phân phối của phép nhân đối với phép cộng để tính toán được thuận lợi, dễ dàng.

Sử dụng các tính chất sau đây:

\(a.0 = 0\)

\(a.b = b.a\)

$a.\left( {b + c} \right) = ab + ac.$

$a.\left( {b - c} \right) = ab-ac.$

Ví dụ:

a) Tính nhanh: \(A = ( - 4).74.25\)

\(\begin{array}{l}A = ( - 4).74.25\\A = ( - 4).25.74\\A = - 100.74\\A = - 7400\end{array}\)

b) Tính hợp lí: \(B = 30.\left( { - 125} \right) + 25.30\)

\(\begin{array}{l}B = 30.\left( { - 125} \right) + 25.30\\B = 30.\left[ {\left( { - 125} \right) + 25} \right]\\B = 30.\left( { - 100} \right)\\B = - 3000.\end{array}\).

III. Bài toán đưa về thực hiện phép nhân (chia) hai số nguyên

Bước 1: Căn cứ vào đề bài, suy luận để đưa về phép nhân (chia) hai số nguyên.

Bước 2: Thực hiện phép nhân (chia) hai số nguyên.

Bước 3: Kết luận.

IV. Tìm các số nguyên x,y sao cho x.y = a (a thuộc Z)

Phương pháp

- Phân tích số nguyên $a$ thành tích hai số nguyên bằng tất cả các cách có thể.

- Từ đó tìm được $x,y.$

Ví dụ:

Tìm số nguyên \(x,y\) thỏa mãn \(\left( {x - 1} \right)\left( {y + 1} \right) = 3\)

Ta có: \(3 = ( - 1).( - 3) = 1.3\) nên ta có 4 trường hợp sau:

TH1: \(x - 1 = - 1\) và \(y + 1 = - 3\) suy ra \(x = 0\) và \(y = - 4\)

TH2: \(x - 1 = - 3\) và \(y + 1 = - 1\) suy ra \(x = - 2\) và \(y = - 2\)

TH3: \(x - 1 = 1\) và \(y + 1 = 3\) suy ra \(x = 2\) và \(y = 2\)

TH4: \(x - 1 = 3\) và \(y + 1 = 1\) suy ra \(x = 4\) và \(y = 0\)

Vậy \(\left( {x;y} \right) \in \left\{ {\left( {0;\,\, - 4} \right);\,\left( { - 2;\, - 2} \right);\left( {2;\,2} \right);\left( {4;0} \right)} \right\}\).

V. Bài toán tìm x và tìm số chưa biết trong đẳng thức dạng A.B = 0

- Bài toán tìm x:

+ Muốn tìm số hạng ta lấy tích chia cho số hạng còn lại.

+ Muốn tìm số chia ta lấy sô bị chia chia cho thương.

+ Muốn tìm số bị chia ta lấy thương nhân số chia.

- Dạng toán \(A.B=0\)

+ Nếu $A.B = 0$ thì $A = 0$ hoặc $B = 0.$

+ Nếu $A.B = 0$ mà $A$ (hoặc $B$ ) khác $0$ thì $B$ ( hoặc $A$ ) bằng $0.$

Ví dụ: Tìm \(x\) biết: \(\left( {x - 2} \right).\left( {x + 5} \right) = 0\)

\(\left( {x - 2} \right).\left( {x + 5} \right) = 0 \Rightarrow \)\(x - 2 = 0\) hoặc \(x + 5 = 0\)

Suy ra \(x = 2\) hoặc \(x = - 5\)

Vậy \(x \in \left\{ {2;\, - 5} \right\}\).

VI. Xét dấu các thừa số và tích trong phép nhân nhiều số nguyên

Phương pháp:

Sử dụng nhận xét:

Tích một số chẵn thừa số nguyên âm mang dấu $“+”.$

Tích một số lẻ thừa số nguyên âm sẽ mang dấu $“-”.$

Ví dụ:

Dấu của kết quả phép nhân \(( - 2).( - 2).( - 2).( - 2).( - 2)\) mang dấu?

Ta thấy phép nhân trên là tích của 5 thừa số âm nên kết quả của phép nhân mang dấu âm.

VII. Chứng minh các tính chất về sự chia hết

Phương pháp:

Sử dụng định nghĩa $a = b.q$ $ \Leftrightarrow a \vdots b$ $\left( {a,b,q \in Z;b \ne 0} \right)$ và các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng, tính chất chia hết của một tổng.

Ví dụ:

Cho \(A = 24m + 21n\,\); \(m,n \in \mathbb{Z}\) chứng minh A chia hết cho 3.

Cách 1:

Ta có \(24m \vdots 3\) và \(21n \vdots 3\) suy ra \(A=\left( {24m + 21n\,} \right) \vdots 3\)

Cách 2: \(A = 24m + 21n\, = 3.8m + 3.7n = 3.\left( {8m + 7m} \right) \vdots 3\). Vậy \(A \vdots 3\).

VIII. Tìm ước và bội của một số nguyên cho trước

Phương pháp:

- Tìm các bội của một số nguyên cho trước.

Dạng tổng quát của số nguyên $a$ là $a.m$$(m \in Z).$

- Tìm tất cả các ước của một số nguyên cho trước

+ Nếu số nguyên đã cho có thể nhẩm được các ước thì ta ưu tiên cách này.

+ Nếu số nguyên đã cho có nhiều ước hoặc khó để nhẩm thì ta phân tích số đó ra thừa số nguyên tố, từ đó tìm tất cả các ước của số đã cho.

Chú ý: Ta tìm các ước dương trước từ đó suy ra các ước âm.

Ví dụ:

a) Tìm các bội nguyên của 4.

Ta lấy 4 nhân lần lượt với các số nguyên: \(..; - \,2;\, - 1;0;1;2;..\)

Các bội nguyên của 4 là: \(..; - 8; - 4;\,0\,;\,4;\,8;..\)

b) Tìm các ước nguyên của 24

Phân tích 24 ra thừa số nguyên tố ta được: \(24 = {2^3}.3\)

Suy ra các ước nguyên của 24 là: \( \pm 1; \pm 2;\,\, \pm 3;\, \pm 4; \pm 6 \pm 8;\,\, \pm 12;\, \pm 24\).

IX. Tìm số nguyên thỏa mãn điều kiện về chia hết

Phương pháp:

- Dạng: biểu thức có dạng tổng các số hạng thì ta áp dụng tính chất:

Nếu $a + b$ chia hết cho $c$ và $a$ chia hết cho $c$ thì $b$ chia hết cho $c.$

- Dạng: Tìm x để \({\rm{a}} \vdots A(x)\) thì \(A(x) \in \)Ư(a), giải các trường hợp ta tìm được các giá trị của \(x\).

Ví dụ:

Tìm \(x\) để \(5 \vdots \left( {x - 2} \right)\)

\(5 \vdots \left( {x - 2} \right) \Rightarrow \left( {x - 2} \right) \in \)Ư(5) \( \Rightarrow \) \(\left( {x - 2} \right) \in \left\{ { - 1;1;5; - 5} \right\} \Rightarrow x \in \left\{ {1;3;7; - 3} \right\}\)

Vậy \(x \in \left\{ {1;3;7; - 3} \right\}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 6

Lớp 6 - Năm đầu tiên của cấp trung học cơ sở, mọi thứ đều mới mẻ và đầy thách thức. Hãy tự tin làm quen với bạn bè mới và đón nhận những cơ hội học tập thú vị!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK