I. Viết gọn một tích, một phép tính dưới dạng một lũy thừa
Áp dụng công thức: $\underbrace {a.a.a.....a}_{n\,{\rm{thua}}\,{\rm{so}}}$$ = {a^n};$${a^m}.{a^n} = {a^{m + n}};{a^m}:{a^n} = {a^{m - n}}\left( {a \ne 0,m \ge n} \right)$
II. Nhân và chia hai lũy thừa cùng cơ số
Bước 1: Xác định cơ số và số mũ.
Bước 2: Áp dụng công thức:${a^m}.{a^n} = {a^{m + n}};{a^m}:{a^n} = {a^{m - n}}\left( {a \ne 0,m \ge n} \right)$
III. So sánh các số viết dưới dạng lũy thừa
Để so sánh các số viết dưới dạng lũy thừa, ta có thể làm theo:
Cách 1: Đưa về cùng cơ số là số tự nhiên, rồi so sánh hai số mũ
Nếu \(m > n\) thì \({a^m} > {a^n}\)
Cách 2: Đưa về cùng số mũ rồi so sánh hai cơ số
Nếu \(a > b\) thì \({a^m} > {b^m}\)
Cách 3: Tính cụ thể rồi so sánh
Ngoài ra ta còn sử dụng tính chất bắc cầu: Nếu \(a < b;b < c\) thì \(a < c.\)
IV. Tìm số mũ của một lũy thừa trong một đẳng thức
Bước 1: Đưa về hai luỹ thừa của cùng một cơ số.
Bước 2: Sử dụng tính chất
Với \(a \ne 0;a \ne 1\), nếu ${a^m} = {a^n}$ thì $m = n\,\,(a,m,n \in N)$
V. Tìm cơ số của lũy thừa
Cách 1: Dùng định nghĩa lũy thừa
$\underbrace {a.a.....a}_{n\,{\rm{thừa}}\,{\rm{số}}\,a}$ $ = {a^n}$ Cách 2: Sử dụng tính chất
Với \(a;b \ne 0;a;b \ne 1\), nếu ${a^m} = {b^m}$ thì $a = n\,\,(a,b,m,n \in N)$.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Năm đầu tiên của cấp trung học cơ sở, mọi thứ đều mới mẻ và đầy thách thức. Hãy tự tin làm quen với bạn bè mới và đón nhận những cơ hội học tập thú vị!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK