Trong không gian Oxyz, sàn của một căn phòng có dạng hình tứ giác với bốn đỉnh O(0; 0; 0), A(2; 0; 0), B(2; 3; 0), \(C\left( {0;2\sqrt 2 ;0} \right)\). Bốn bức tường của căn phòng đều vuông góc với sàn.
a) Viết phương trình bốn mặt phẳng tương ứng chứa bốn bức tường đó.
b) Trong bốn mặt phẳng tương ứng chứa bốn bức tường đó, hãy chỉ ra những cặp mặt phẳng vuông góc với nhau.
Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:
+ Tìm vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
a) Bốn mặt phẳng tương ứng chứa bốn bức tường vuông góc với mặt sàn là: Mặt phẳng (Oyz), mặt phẳng (Oxz), mặt phẳng (P) chứa hai điểm A, B và vuông góc với mặt sàn, mặt phẳng (Q) chứa hai điểm B, C và vuông góc với mặt sàn.
Mặt phẳng (Oyz) có vectơ pháp tuyến \(\overrightarrow i \left( {1;0;0} \right)\) và đi qua điểm \(O\left( {0;0;0} \right)\) nên phương trình mặt phẳng (Oyz) là: \(x = 0\)
Mặt phẳng (Oxz) có vectơ pháp tuyến \(\overrightarrow j \left( {0;1;0} \right)\) và đi qua điểm \(O\left( {0;0;0} \right)\) nên phương trình mặt phẳng (Oxz) là: \(y = 0\)
Ta có: \(\overrightarrow {AB} \left( {0;3;0} \right),\overrightarrow {BC} \left( { - 2;2\sqrt 2 - 3;0} \right),\overrightarrow i \left( {1;0;0} \right),\overrightarrow j \left( {0;1;0} \right),\overrightarrow k \left( {0;0;1} \right)\)
Mặt phẳng (P) đi qua điểm A(2; 0; 0) và nhận \(\overrightarrow i = \left( {1;0;0} \right)\) làm vectơ pháp tuyến. Do đó, phương trình mặt phẳng (P) là: \(x - 2 = 0\)
\(\left[ {\overrightarrow {BC} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}{2\sqrt 2 - 3}&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 2}\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&{2\sqrt 2 - 3}\\0&0\end{array}} \right|} \right) = \left( {2\sqrt 2 - 3;2;0} \right)\)
Mặt phẳng (Q) đi qua điểm \(C\left( {0;2\sqrt 2 ;0} \right)\) và nhận \(\left[ {\overrightarrow {BC} ,\overrightarrow k } \right] = \left( {2\sqrt 2 - 3;2;0} \right)\) làm vectơ pháp tuyến. Do đó, phương trình mặt phẳng (Q) là:
\(\left( {2\sqrt 2 - 3} \right)x + 2\left( {y - 2\sqrt 2 } \right) = 0 \Leftrightarrow \left( {2\sqrt 2 - 3} \right)x + 2y - 4\sqrt 2 = 0\)
b) Các cặp mặt phẳng vuông góc với nhau là: (Oxz) và (Oyz); (Oxz) và (P).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK