Bác An dự định làm bốn mái của ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp đều và các mái nhà kề nhau thì vuông góc với nhau. Hỏi ý tưởng trên có thực hiện được không?
Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc để chứng minh: Trong không gian Oxyz, cho hai mặt phẳng \(\left( \alpha \right):Ax + By + Cz + D = 0\), \(\left( \beta \right):A’x + B’y + C’z + D’ = 0\) với hai vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n’} = \left( {A’;B’;C’} \right)\) tương ứng. Khi đó, \(\left( \alpha \right) \bot \left( \beta \right) \Leftrightarrow \overrightarrow n \bot \overrightarrow {n’} \Leftrightarrow AA’ + BB’ + CC’ = 0\)
Đặt tên bốn mái của ngôi nhà và chọn hệ trục tọa độ như hình sau:
Giả sử hình vuông ABCD cạnh a và các cạnh bên bằng nhau có độ dài là b.
Vì ABCD là hình vuông, O là giao điểm của AC và BD nên \(OC = OD = OB = \frac{{a\sqrt 2 }}{2}\)
Tam giác SOC vuông tại O nên \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} = \sqrt {\frac{{2{b^2} - {a^2}}}{2}} \)
Khi đó, \(O\left( {0;0;0} \right),C\left( {\frac{{a\sqrt 2 }}{2};0;0} \right),D\left( {0;\frac{{a\sqrt 2 }}{2};0} \right),B\left( {0;\frac{{ - a\sqrt 2 }}{2};0} \right),S\left( {0;0;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\)
\(\overrightarrow {SC} \left( {\frac{{a\sqrt 2 }}{2};0; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right),\overrightarrow {DC} \left( {\frac{{a\sqrt 2 }}{2};\frac{{ - a\sqrt 2 }}{2};0} \right),\overrightarrow {BC} \left( {\frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{2};0} \right)\)
\(\left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }\\{ - 1}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }&{\frac{{a\sqrt 2 }}{2}}\\0&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\frac{{a\sqrt 2 }}{2}}&0\\1&{ - 1}\end{array}} \right|} \right)\) \( = \left( { - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{ - a\sqrt 2 }}{2}} \right)\)
\(\left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }\\1&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }&{\frac{{a\sqrt 2 }}{2}}\\0&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\frac{{a\sqrt 2 }}{2}}&0\\1&1\end{array}} \right|} \right) = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\)
Mặt phẳng (SCD) nhận \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( { - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{ - a\sqrt 2 }}{2}} \right)\) làm một vectơ pháp tuyến.
Mặt phẳng (SCB) nhận \(\overrightarrow {{n_2}} = \left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\) làm một vectơ pháp tuyến.
Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} .\sqrt {\frac{{2{b^2} - {a^2}}}{2}} + \sqrt {\frac{{2{b^2} - {a^2}}}{2}} .\sqrt {\frac{{2{b^2} - {a^2}}}{2}} + \frac{{a\sqrt 2 }}{2}.\frac{{a\sqrt 2 }}{2} = \frac{{{a^2}}}{2} \ne 0\)
Do đó, hai mặt phẳng (SCD) và (SCB) không vuông góc với nhau.
Vậy không thể thực hiện được ý tưởng trên.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK