Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Chương 3. Các số đo đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm Giải mục 1 trang 80, 81, 82 Toán 12 tập 1 - Kết nối tri thức: Có thể tính được chính xác phương sai và độ lệch chuẩn của mẫu số liệu gốc hay không?...

Giải mục 1 trang 80, 81, 82 Toán 12 tập 1 - Kết nối tri thức: Có thể tính được chính xác phương sai và độ lệch chuẩn của mẫu số liệu gốc hay không?...

. Giải và trình bày phương pháp giải HĐ1, LT1, VD mục 1 trang 80, 81, 82 SGK Toán 12 tập 1 - Kết nối tri thức Bài 10. Phương sai và độ lệch chuẩn. Phương sai và độ lệch chuẩn... Có thể tính được chính xác phương sai và độ lệch chuẩn của mẫu số liệu gốc hay không?

Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 80 SGK Toán 12 Kết nối tri thức

Trở lại bài toán trong tình huống mở đầu, gọi \({x_1},{x_2},...,{x_{20}}\) là các kết quả đo (mẫu số liệu gốc).

a) Có thể tính được chính xác phương sai và độ lệch chuẩn của mẫu số liệu gốc hay không?

b) Thảo luận và đề xuất ước lượng cho phương sai và độ lệch chuẩn của mẫu số liệu gốc.

Hướng dẫn giải :

Sử dụng kiến thức về tính phương sai và độ lệch chuẩn của mẫu số liệu gốc để ước lượng: Với mẫu số liệu cho dạng bảng tần số với \({m_i}\) là tần số của giá trị \({x_i}\) và \(n = {m_1} + ... + {m_k}\)

+ Phương sai là giá trị: \({s^2} = \frac{{{m_1}{{\left( {{x_1} - \overline x } \right)}^2} + {m_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {m_k}{{\left( {{x_k} - \overline x } \right)}^2}}}{n}\).

+ Căn bậc hai của phương sai \(s = \sqrt {{s^2}} \) được gọi là độ lệch chuẩn.

Lời giải chi tiết :

a) Không thể tính được chính xác phương sai và độ lệch chuẩn của mẫu số liệu gốc.

b) Tính phương sai và độ lệch chuẩn thông qua số liệu của mẫu số liệu ghép nhóm như sau:

+ Tìm \({y_1},{y_2},{y_3},{y_4},{y_5}\) lần lượt là giá trị đại diện của các nhóm \(\left[ {52;52,1} \right)\), \(\left[ {52,1;52,2} \right)\), \(\left[ {52,2;52,3} \right)\), \(\left[ {52,3;52,4} \right)\), \(\left[ {52,4;52,5} \right)\).

+ Tính số trung bình cộng \(\overline y \) của mẫu số liệu ghép nhóm đó.

+ Tính phương sai: \({s^2} = \frac{{1.{{\left( {{y_1} - \overline y } \right)}^2} + 5{{\left( {{y_2} - \overline y } \right)}^2} + 8{{\left( {{y_3} - \overline y } \right)}^2} + 4{{\left( {{y_4} - \overline y } \right)}^2} + 2{{\left( {{y_5} - \overline y } \right)}^2}}}{{20}}\)

+ Tính độ lệch chuẩn: \(s = \sqrt {{s^2}} \).

Khi đó, phương sai và độ lệch chuẩn của mẫu số liệu gốc lần lượt xấp xỉ với các giá trị \({s^2}\) và s.


Câu hỏi:

Luyện tập1

Trả lời câu hỏi Luyện tập 1 trang 82 SGK Toán 12 Kết nối tri thức

Một vận động viên luyện tập chạy cự li 100m đã ghi lại kết quả luyện tập như sau:

image

Tìm phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm này. Phương sai và độ lệch chuẩn cho biết điều gì?

Hướng dẫn giải :

Sử dụng kiến thức về phương sai của mẫu số liệu ghép nhóm để tính: Phương sai của mẫu số liệu ghép nhóm, kí hiệu là \({s^2}\), là một số được tính theo công thức sau: \({s^2} = \frac{1}{n}\left( {{m_1}x_1^2 + ... + {m_k}x_k^2} \right) - {\left( {\overline x } \right)^2}\), trong đó \(n = {m_1} + ... + {m_k}\) với \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\) là số trung bình của mẫu số liệu ghép nhóm.

Sử dụng kiến thức độ lệch chuẩn của mẫu số liệu ghép nhóm để tính: Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} \).

Sử dụng kiến thức về ý nghĩa của phương sai và độ lệch chuẩn để giải thích: Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm là các xấp xỉ cho phương sai, độ lệch chuẩn của mẫu số liệu gốc.

Lời giải chi tiết :

Chọn giá trị đại diện cho các nhóm số liệu, ta có:

image

Tổng số vận động viên là: \(3 + 7 + 8 + 2 = 20\)

Thời gian chạy trung bình của các vận động viên là: \(\overline x = \frac{1}{{20}}\left( {10,3.3 + 10,5.7 + 10,7.8 + 10,9.2} \right) = 10,59\) (giây)

Phương sai của mẫu số liệu là:

\({s^2} = \frac{1}{{20}}\left( {10,{3^2}.3 + 10,{5^2}.7 + 10,{7^2}.8 + 10,{9^2}.2} \right) - 10,{59^2} = 0,0299\)

Độ lệch chuẩn của mẫu số liệu là: \(\sqrt {0,0299} \approx 0,17\)

Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm là các xấp xỉ cho phương sai, độ lệch chuẩn của mẫu số liệu gốc. Do đó, với mẫu số liệu gốc, phương sai xấp xỉ 0,0299 và độ lệch chuẩn xấp xỉ 0,17 giây.


Câu hỏi:

Vận dụng

Trả lời câu hỏi Vận dụng trang 82 SGK Toán 12 Kết nối tri thức

Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm cho bài toán trong tình huống mở đầu và cho biết có cần đưa máy đi sửa chữa hay không.

Hướng dẫn giải :

Sử dụng kiến thức về phương sai của mẫu số liệu ghép nhóm để tính: Phương sai của mẫu số liệu ghép nhóm, kí hiệu là \({s^2}\), là một số được tính theo công thức sau: \({s^2} = \frac{1}{n}\left( {{m_1}x_1^2 + ... + {m_k}x_k^2} \right) - {\left( {\overline x } \right)^2}\), trong đó \(n = {m_1} + ... + {m_k}\) với \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\) là số trung bình của mẫu số liệu ghép nhóm.

Sử dụng kiến thức độ lệch chuẩn của mẫu số liệu ghép nhóm để tính: Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} \).

Lời giải chi tiết :

Chọn giá trị đại diện cho các nhóm số liệu, ta có:

image

Độ ẩm trung bình trong 20 lần đo là: \(\overline x = \frac{1}{{20}}\left( {52,05.1 + 52,15.5 + 52,25.8 + 52,35.4 + 52,45.2} \right) = 52,255\)

Phương sai của mẫu số liệu ghép nhóm là:

\({s^2} = \frac{1}{{20}}\left( {52,{{05}^2}.1 + 52,{{15}^2}.5 + 52,{{25}^2}.8 + 52,{{35}^2}.4 + 52,{{45}^2}.2} \right) - 52,{255^2} = 0,010475\)

Độ lệch chuẩn của mẫu số liệu là: \(s = \sqrt {0,010475} \approx 0,102\)

Vì \(0,102 < 0,15\) nên không cần đưa máy đo này đi sửa chữa.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK