Nhận biết tiếp tuyến của đồ thị hàm số
Cho hàm số \(y = f\left( x \right)\) có đồ thị (C) và điểm \(P\left( {{x_0};f\left( {{x_0}} \right)} \right) \in \left( C \right).\) Xét điểm \(Q\left( {x;f\left( x \right)} \right)\) thay đổi trên (C) với \(x \ne {x_0}.\)
a) Đường thẳng đi qua hai điểm P, Q được gọi là một là một cát tuyến của đồ thị (C) (H.9.3). Tìm hệ số góc kPQ của cát tuyến PQ.
b) Khi \(x \to {x_0}\) thì vị trí của điểm \(Q\left( {x;f\left( x \right)} \right)\) trên đồ thị (C) thay đổi như thế nào?
c) Nếu điểm Q di chuyển trên (C) tới điểm P mà kPQ có giới hạn hữu hạn k thì có nhận xét gì về vị trí giới hạn của cát tuyến QP?
Hệ số góc của đường thẳng đi qua hai điểm \(\left( {{x_1};{y_1}} \right)\) và \(\left( {{x_2};{y_2}} \right),\) với \({x_1} \ne {x_2}\) là
\(k = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\)
a) Hệ số góc của cát tuyến PQ là \({k_{PQ}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
b) Khi \(x \to {x_0}\) thì vị trí của điểm \(Q\left( {x;f\left( x \right)} \right)\) trên đồ thị (C) sẽ tiến gần đến điểm \(P\left( {{x_0};f\left( {{x_0}} \right)} \right)\) và khi \(x = {x_0}\) hai điểm này sẽ trùng nhau
c) Nếu điểm Q di chuyển trên (C) tới điểm P mà kPQ có giới hạn hữu hạn k thì cát tuyến PQ cũng sẽ tiến đến gần vị trí tiếp tuyến của đồ thị (C) tại điểm P. Vì vậy giới hạn của cát tuyến QP sẽ là đường thẳng tiếp tuyến tại điểm P.
Tìm hệ số góc của tiếp tuyến của parabol \(y = {x^2}\) tại điểm có hoành độ \({x_0} = \frac{1}{2}.\)
Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(P\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là đạo hàm \(f’\left( {{x_0}} \right)\)
Ta có \(y’ = {\left( {{x^2}} \right)^\prime } = 2x\) nên \(y’\left( {\frac{1}{2}} \right) = 2.\frac{1}{2} = 1.\) Vậy hệ số góc của tiếp tuyến của parabol \(y = {x^2}\) tại điểm có hoành độ \({x_0} = \frac{1}{2}\) là k = 1.
Cho hàm số y = x2 có đồ thị là đường parabol (P).
a) Tìm hệ số góc của tiếp tuyến của (P) tại điểm có hoành độ x0 = 1.
b) Viết phương trình tiếp tuyến đó.
- Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(P\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là đạo hàm \(f’\left( {{x_0}} \right)\)
- Phương trình đường thẳng với hệ số góc k có dạng \(y = kx + c\)
a) Ta có \(y’ = {\left( {{x^2}} \right)^\prime } = 2x\) nên \(y’\left( 1 \right) = 2.1 = 2.\) Vậy hệ số góc của tiếp tuyến của parabol \(y = {x^2}\) tại điểm có hoành độ \({x_0} = 1\) là k = 2.
b) Ta có \({x_0} = 1\) nên \({y_0} = {1^2} = 1.\)
Hệ số góc của tiếp tuyến là k = 2 nên phương trình tiếp tuyến có dạng \(y = 2x + c\)
\( \Rightarrow 1 = 2.1 + c \Rightarrow c = - 1\)
Vậy phương trình tiếp tuyến là \(y = 2x - 1\)
Viết phương trình tiếp tuyến của parabol \(\left( P \right):y = - 2{x^2}\) tại điểm có hoành độ \({x_0} = - 1\)
- Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f’\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)
- Từ ví dụ 2 có \({\left( {c{x^2}} \right)^\prime } = 2cx\)
Ta có \(y’ = {\left( { - 2{x^2}} \right)^\prime } = - 4x\) nên \(y’\left( { - 1} \right) = - 4.\left( { - 1} \right) = 4.\)
Ngoài ra , \(f\left( { - 1} \right) = - 2\) nên phương trình tiếp tuyến cần tìm là:
\(y - \left( { - 2} \right) = 4\left( {x + 1} \right)\) hay \(y = 4x + 2\)
Người ta xây dựng một cây cầu vượt giao thông hình parabol nối hai điểm có khoảng cách là 400 m (H.9.4). Độ dốc của mặt cầu không vượt quá 100 (độ dốc tại một điểm được xác định bởi góc giữa phương tiếp xúc với mặt cầu và phương ngang như Hình 9.5). Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất).
Sử dụng công thức \({\left( {c{x^2}} \right)^\prime } = 2cx\)
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm AB, tia Ox trùng với tia OB, tia Oy hướng lên trên.
Khi đó \(A\left( { - 200;0} \right),B\left( {200;0} \right).\) Gọi chiều cao giới hạn của cầu là h (h > 0), suy ra đỉnh cầu có tọa độ (0; h).
Ta tìm được phương trình parabol của cầu là \(y = - \frac{h}{{{{200}^2}}}{x^2} + h\)
Ta có \(y’ = - \frac{{2h}}{{{{200}^2}}}x.\) Suy ra hệ số góc xác định độ dốc của mặt cầu là
\(k = y’ = - \frac{{2h}}{{{{200}^2}}}x, - 200 \le x \le 200.\)
Do đó \(\left| k \right| = \frac{{2h}}{{{{200}^2}}}\left| x \right| \le \frac{{2h}}{{{{200}^2}}}.200 = \frac{h}{{100}}\)
Vì độ dốc của mặt cầu không quá 100 nên ta có \(\frac{h}{{100}} \le \tan {10^0} \Leftrightarrow h \le 17,6\)
Vậy chiều cao giới hạn từ đỉnh cầu tới mặt đường là 17,6m.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK