Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Chương VI. Hàm số mũ và hàm số lôgarit Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Kết nối trí thức: Phương trình mũ Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(0 < a \ne 1\))...

Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Kết nối trí thức: Phương trình mũ Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(0 < a \ne 1\))...

Hướng dẫn trả lời lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Kết nối trí thức Bài 21. Phương trình - bất phương trình mũ và lôgarit. Phương trình mũ Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(0 < a \ne 1\)).

1. Phương trình mũ

Phương trình mũ cơ bản có dạng \({a^x} = b\)(với \(0 < a \ne 1\)).

- Nếu b > 0 thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).

- Nếu b \( \le \) 0 thì phương trình vô nghiệm.

Minh họa bằng đồ thị:

image

Chú ý: Phương pháp giải phương trình mũ bằng cách đưa về cùng cơ số:

Nếu \(0 < a \ne 1\) thì \({a^u} = {a^v} \Leftrightarrow u = v\).

2. Phương trình lôgarit

Phương trình lôgarit cơ bản có dạng \({\log _a}x = b\left( {0 < a \ne 1} \right)\).

Phương trình lôgarit cơ bản \({\log _a}x = b\) có nghiệm duy nhất \(x = {a^b}\).

Minh họa bằng đồ thị:

image

Chú ý: Phương pháp giải phương trình lôgarit bằng cách đưa về cùng cơ số:

Nếu \(u,v > 0\) và \(0 < a \ne 1\) thì \({\log _a}u = {\log _a}v \Leftrightarrow u = v\).

3. Bất phương trình mũ

Bất phương trình mũ cơ bản có dạng \({a^x} > b\) (hoặc \({a^x} \ge b,{a^x} < b,{a^x} \le b\)) với \(a > 0,a \ne 1\).

Xét bất phương trình dạng \({a^x} > b\):

- Nếu \(b \le 0\) thì tập nghiệm của bất phương trình là \(\mathbb{R}\).

- Nếu b > 0 thì bất phương trình tương đương với \({a^x} > {a^{{{\log }_a}b}}\).

Với a > 1, nghiệm của bất phương trình là \(x > {\log _a}b\).

Với \(0 < a < 1\), nghiệm của bất phương trình là \(x < {\log _a}b\).

Chú ý:

a) Các bất phương trình mũ cơ bản còn lại được giải tương tự.

b) Nếu a > 1 thì \({a^u} = {a^v} \Leftrightarrow u > v\).

Nếu 0 < a < 1 thì \({a^u} > {a^v} \Leftrightarrow u < v\).

4. Bất phương trình lôgarit

Bất phương trình lôgarit cơ bản có dạng \({\log _a}x > b\)(hoặc \({\log _a}x \ge b,{\log _a}x < b,{\log _a}x \le b\)) với \(a > 0,a \ne 1\).

Xét bất phương trình dạng \({\log _a}x > b\):

- Nếu a > 1 thì nghiệm của bất phương trình là \(x > {a^b}\).

- Nếu 0 < a < 1 thì nghiệm của bất phương trình là \(0 < x < {a^b}\).

Chú ý:

a) Các bất phương trình lôgarit cơ bản còn lại được giải tương tự.

b) Nếu a > 1 thì \({\log _a}u > {\log _a}v \Leftrightarrow u > v > 0\).

Nếu 0 < a < 1 thì \({\log _a}u > {\log _a}v \Leftrightarrow 0 < u < v\).

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK