Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Chương 4 Quan hệ song song trong không gian Giải mục 2 trang 80, 81, 82 Toán 11 tập 1 - Kết nối tri thức: Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?...

Giải mục 2 trang 80, 81, 82 Toán 11 tập 1 - Kết nối tri thức: Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?...

Phân tích và lời giải HĐ 2 , HĐ 3, LT 3, HĐ 4, LT 4, VD 2 mục 2 trang 80, 81, 82 SGK Toán 11 tập 1 - Kết nối tri thức Bài 11. Hai đường thẳng song song. Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H. 4. 21). Gọi (P) là mặt phẳng chứa M và d... Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?

Câu hỏi:

Hoạt động 2

Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H.4.21). Gọi (P) là mặt phẳng chứa M d.

a) Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?

b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) hay không?

image

Hướng dẫn giải :

Trong không gian, qua một điểm không nằm trên dường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho

Lời giải chi tiết :

a) Có duy nhất một đường thẳng đi qua M song song với d

b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) vì hai đường thẳng song song đồng phẳng


Câu hỏi:

Hoạt động 3

Quan sát lớp học và tìm hai đường thẳng song song với mép trên của bảng. Hai đường thẳng đó có song song với nhau hay không?

Hướng dẫn giải :

Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau

Lời giải chi tiết :

Đường thẳng song song với mép trên của bảng: Mép dưới của bảng, chân tường bục giảng

Hai đường thẳng đó cũng song song với nhau


Câu hỏi:

Luyện tập 3

Trong Ví dụ 1, chứng minh rằng 4 điểm C, D, E, F đồng phẳng và tứ giác CDFE là hình bình hành.

Hướng dẫn giải :

Để chứng minh bốn điểm: C, D, E, F đồng phẳng ta có thể chứng minh hai đường thẳng AB CD song song

Dựa vào dấu hiệu tứ giác là hình bình hành để chứng minh CDEF là hình bình hành

Lời giải chi tiết :

Xét hình bình hành ABCD ta có: AB // CD, AB = CD

Xét hình bình hành ABEF ta có: AB // EF, AB = EF

Suy ra EF//CD, EF = CD

Suy ra CDEF là hình bình hành và C, D, E, F đồng phẳng


Câu hỏi:

Hoạt động 4

Cho hai mặt phẳng (P)(Q) cắt nhau theo giao tuyến c. Một mặt phẳng (R) cắt (P) (Q) lần lượt theo giao tuyến ab khác c

a) Nếu hai đường thẳng ac cắt nhau tại M thì đường thẳng b có đi qua M hay không (H.4.23)? Giải thích vì sao.

b) Nếu hai đường thẳng a c song song với nhau thì hai đường thẳng bc có song song với nhau hay không (H.4.24)? Giải thích vì sao.

Hướng dẫn giải :

Nếu ba mặt phẳng đôi một cắt nhau, theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song với nhau

Lời giải chi tiết :

a) M thuộc c suy ra M nằm trên mp(Q)

M thuộc a suy ra M nằm trên mp(R)

M cùng thuộc mp(R)(Q) suy ra M nằm trên giao tuyến của mp(R) và (Q)

Như vậy , M thuộc b


Câu hỏi:

Luyện tập 4

Trong Ví dụ 4, hãy xác định giao tuyến của hai mặt phẳng (SAD)(SBC)

Hướng dẫn giải :

Để xác định giao điểm của một đường thẳng và một mặt phẳng, ta có thể tìm giao điểm của đường thẳng đó với một đường thẳng nằm trong mặt phẳng đã cho.

Lời giải chi tiết :

Hai mp(SAD) và (SBC) có điểm chung S và chứa hai đường thẳng song song ADBC.

Do đó, giao tuyến của hai mp(SAD) và (SBC) là đường thẳng n đi qua S song cong với ADBC


Câu hỏi:

Vận dụng 2

Một bề kính chứa nước có đáy là hình chữ nhật được đặt nghiêng như Hình 4.26. Giải thích tại sao đường mép nước AB song song với cạnh CD của bề nước

image

Hướng dẫn giải :

Nếu hai mặt phẳng chứa hai đường thẳng song song với nhau thì giao tuyến của chúng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó

Lời giải chi tiết :

Ta có: \(mp\left( {ABKI} \right) \cap mp\left( {CDIK} \right) = IK\)

\(mp\left( {ABKI} \right) \cap mp\left( {ABCD} \right) = AB\)

\(mp\left( {CDIK} \right) \cap \left( {ABCD} \right) = CD\)

IK // CD (Do CDIK là hình chữ nhật) suy ra AB // CD.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK