Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Chương 1 Hàm số lượng giác và phương trình lượng giác Giải mục 4 trang 13, 14, 15, 16 Toán 11 tập 1 - Kết nối tri thức: Dựa vào định nghĩa của \(\sin \alpha \)và \(\cos \alpha \) hãy tính \({\sin ^2}\alpha + {\cos...

Giải mục 4 trang 13, 14, 15, 16 Toán 11 tập 1 - Kết nối tri thức: Dựa vào định nghĩa của \(\sin \alpha \)và \(\cos \alpha \) hãy tính \({\sin ^2}\alpha + {\cos...

Hướng dẫn trả lời HĐ 6, LT 7, HĐ 7, LT 8 , VD 2 mục 4 trang 13, 14, 15, 16 SGK Toán 11 tập 1 - Kết nối tri thức Bài 1. Giá trị lượng giác của góc lượng giác. Dựa vào định nghĩa của (sin alpha )và (cos alpha ) hãy tính ({sin ^2}alpha + {cos ^2}alpha )b) Sử dụng kết quả của HĐ5a và định nghĩa của (tan alpha )...

Câu hỏi:

Hoạt động 6

a) Dựa vào định nghĩa của \(\sin \alpha \)và \(\cos \alpha \) hãy tính \({\sin ^2}\alpha + {\cos ^2}\alpha \)

b) Sử dụng kết quả của HĐ5a và định nghĩa của \(\tan \alpha \), hãy tính \(1 + {\tan ^2}\alpha \)

Hướng dẫn giải :

Vẽ hình. Xác định các điểm \(\sin \alpha \) và \(\cos \alpha \) trên hình.

Sử dụng định lý Pytago để tính

Lời giải chi tiết :

image

a) Trong Hình 5, M là điểm biểu diễn của góc lượng giác \(\alpha \) trên đường tròn lượng giác. Ta có:

OK = MH = \(\sin \alpha \)

OH = KM = \(\cos \alpha \)

\(\begin{array}{l}O{M^2} = O{H^2} + M{H^2}\\ \Rightarrow 1 = {\sin ^2}\alpha + {\cos ^2}\alpha \end{array}\)

b) \(1 + {\tan ^2}\alpha = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\)


Câu hỏi:

Luyện tập 7

Tính các giá trị lượng giác của góc \(\alpha \), biết \(\cos \alpha = - \frac{2}{3}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\)

Hướng dẫn giải :

Sử dụng hệ thức lượng giác cơ bản để tính giá trị lượng giác góc \(\alpha \). Chú ý dấu của giá trị lượng giác.

Lời giải chi tiết :

Vì \(\pi < \alpha < \frac{{3\pi }}{2}\)nên \(\sin \alpha > 0\). Mặc khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra

\(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - \frac{4}{9}} = \frac{{\sqrt 5 }}{3}\)

Do đó \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{\sqrt 5 }}{3}}}{{ - \frac{2}{3}}} = - \frac{{\sqrt 5 }}{2};\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{{ - 2}}{{\sqrt 5 }}\)


Câu hỏi:

Hoạt động 7

Xét hai điểm M, N trên đường tròn lượng giác xác định bởi hai góc đối nhau (H1.12a).

a) Có nhận xét gì về vị trí của hai điểm M, N đổi với hệ trục Oxy. Từ đó rút ra liên hệ giữa \(\cos ( - \alpha )\) và \(\cos \alpha \); \(\sin ( - \alpha )\)và \(\sin \alpha \)

b) Từ kết quả HĐ6a, rút ra liên hệ giữa: \(\tan ( - \alpha )\) và \(\tan \alpha \); \(\cot ( - \alpha )\) và \(\cot \alpha \)

Hướng dẫn giải :

Dựa vào hình vẽ để nhận xét

Lời giải chi tiết :

image

a) Hai điểm M và N đối xứng nhau qua hệ trục Oxy.

Suy ra

\(\cos ( - \alpha )\)=\(\cos \alpha \); \(\sin ( - \alpha )\)= \( - \sin \alpha \)

b) Ta có:

\(\tan ( - \alpha )\) =\( - \tan \alpha \); \(\cot ( - \alpha )\)\( - \cot \alpha \)


Câu hỏi:

Luyện tập 8

Tính: a) \(\sin ( - {675^ \circ })\) b) \(\tan \frac{{15\pi }}{4}\)

Hướng dẫn giải :

Áp dụng liên hệ giữa các giá trị lượng giác của các góc có liên quan đặc biệt.

Lời giải chi tiết :

Ta có: \(\sin ( - {675^ \circ }) = \sin ({45^ \circ } - {2.360^ \circ }) = \sin {45^ \circ } = \frac{{\sqrt 2 }}{2}\)

\(\tan \frac{{15\pi }}{4} = \tan \left( {3\pi + \frac{{3\pi }}{4}} \right) = \tan \left( {\pi + \frac{{3\pi }}{4}} \right) = \tan \left( {\frac{{3\pi }}{4}} \right) = \tan \left( {\pi - \frac{\pi }{4}} \right) = - \tan \left( {\frac{\pi }{4}} \right) = - 1\)


Câu hỏi:

Vận dụng 2

Huyết áp của mỗi người thay đổi trong ngày. Giả sử huyết áp trương (tức là áp lực máu lên thành động mạch khi tim giãn ra) của một người nào đó ở trạng thái nghỉ ngơi tại thời điểm t được cho bởi công thức:

\(B(t) = 80 + 7.\sin \frac{{\pi t}}{{12}}\)

Trong đó t là số giờ tính từ lúc nửa đêm và B(t) tính bằng mmHg (milimét thủy ngân). Tìm huyết áp tâm trương của người này vào cá thời điểm sau:

a) 6 giờ sáng b) 10 giờ 30 phút sáng; c) 12 giờ trưa d) 8 giờ tối

Hướng dẫn giải :

Tính thời gian t

Áp dụng liên hệ giữa các giá trị lượng giác giữa các góc có liên quan đặc biệt.

Lời giải chi tiết :

a) t = 6

\( \Rightarrow B(6) = 80 + 7.\sin \frac{{\pi 6}}{{12}} = 80 + 7.\sin \frac{\pi }{2} = 87\)

b) t=10,5

\( \Rightarrow B(10,5) = 80 + 7.\sin \frac{{\pi 10,5}}{{12}} = 80 + 7.\sin \frac{{7\pi }}{8} = 82,67878\)

c) t=12

\( \Rightarrow B(12) = 80 + 7.\sin \frac{{\pi 12}}{{12}} = 80 + 7.\sin \pi = 80\)

d) t = 20

\(\begin{array}{l} \Rightarrow B(20) = 80 + 7.\sin \frac{{\pi 20}}{{12}} = 80 + 7.\sin \frac{{5\pi }}{3} = 80 + 7.\sin \left( {\pi + \frac{{2\pi }}{3}} \right) = 80 - 7.\sin \left( {\frac{{2\pi }}{3}} \right) = 80 - 7.\sin \left( {\pi - \frac{\pi }{3}} \right)\\ = 80 - 7.\sin \left( {\frac{\pi }{3}} \right) = \frac{{160 - 7\sqrt 3 }}{2}\end{array}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK