HĐ2
Hai đường thẳng \({\Delta _1},{\Delta _2}\) cắt nhau tạo thành bốn góc. Các số đo của bốn góc đó có mối quan hệ gì với nhau?
Hai đường thẳng cắt nhau tạo thành bốn góc trong đó có hai góc nhọn bằng nhau và hai góc tù bằng nhau. Góc nhọn và góc tù trong trường hợp này là hai góc bù nhau.
HĐ3
Hai đường thẳng cắt nhau \({\Delta _1},{\Delta _2}\)tương ứng có các vecto pháp tuyến \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \). Gọi \(\varphi \) là góc giữa hai đường thẳng đó. Nêu mối quan hệ giữa:
a) \(\varphi \) và góc \(\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)\).
b) \(\cos \varphi \) và \(\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)\).
a) Góc \(\varphi \) và góc \(\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)\) có thể bằng nhau hoặc bù nhau.
b) Do góc \(\varphi \) và góc \(\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)\) có thể bằng nhau hoặc bù nhau nên \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right|\)
Luyện tập 2
Tính góc giữa hai đường thẳng : \({\rm{ }}{\Delta _1}:{\rm{ }}x + 3y + 2{\rm{ }} = {\rm{ }}0,{\rm{ }}{\Delta _2}:{\rm{ }}y = 3x + 1\)
Cho hai đường thẳng \({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0,\;{\Delta _2}:{a_1}x + {b_1}y + {c_1} = 0\)
Bước 1: Xác định VTPT \(\overrightarrow {{n_1}} ({a_1},{b_1})\) và \(\overrightarrow {{n_2}} ({a_2},{b_2})\) tương ứng.
Bước 2: Tính \(\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} .\sqrt {{a_2}^2 + {b_2}^2} }}\)
Từ đó suy ra \(\varphi \), là góc giữa hai đường thẳng
Ta có \({\Delta _1}\)có vecto pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;3} \right)\).
Phương trình tổng quát của \({\Delta _2}\) là \(3x - y + 1 = 0\), suy ra \(\overrightarrow {{n_2}} = \left( {3; - 1} \right)\)
Do \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.3 + 3.\left( { - 1} \right) = 0\). Vậy hai đường thẳng vuông góc với nhau.
Cách 2:
Gọi \(\varphi \) là góc giữa hai đường thẳng, ta có:
\(\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {1.3 + 3.( - 1)} \right|}}{{\sqrt {{1^2} + {3^2}} .\sqrt {{3^2} + {{( - 1)}^2}} }} = 0\)
Do đó góc giữa \({\Delta _1}\) và \({\Delta _2}\) là \(\varphi =90^o\)
Luyện tập 3
Tính góc giữa hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\end{array} \right.,{\rm{ }}{\Delta _2}:\left\{ \begin{array}{l}x = 1 + t’\\y = 5 + 3t’\end{array} \right.\)
Cho hai đường thẳng \({\Delta _1},\;{\Delta _2}\)
Bước 1: Xác định VTPT \(\overrightarrow {{n_1}} ({a_1},{b_1})\) và \(\overrightarrow {{n_2}} ({a_2},{b_2})\) tương ứng.
Bước 2: Tính \(\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} .\sqrt {{a_2}^2 + {b_2}^2} }}\)
Từ đó suy ra \(\varphi \), là góc giữa hai đường thẳng
Ta có: \(\overrightarrow {{u_1}} = \left( {1; - 2} \right) \Rightarrow \overrightarrow {{n_1}} = \left( {2;1} \right)\) và \(\overrightarrow {{u_2}} = \left( {1;3} \right) \Rightarrow \overrightarrow {{n_2}} = \left( {3; - 1} \right)\).
Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {2.3 + 1.( - 1)} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{3^2} + {{( - 1)}^2}} }} = \frac{{\sqrt 2 }}{2} \\ \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)
Luyện tập 4
Cho đường thẳng \(\Delta \): y= ax + b, với\(a \ne 0\) .
a) Chứng minh rằng \(\Delta \) cắt trục hoành.
b) Lập phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \)
c) Hãy chỉ ra mối quan hệ giữa \({\alpha _\Delta }\) và \({\alpha _{{\Delta _o}}}\).
d) Gọi M là giao điểm của \({\Delta _o}\) với nửa đường tròn đơn vị và \({x_o}\) là hoành độ của M. Tính tungđộ của M theo \({x_o}\) và a. Từ đó, chứng minh rằng \(\tan {\alpha _\Delta } = a\).
a) Xét hệ phương trình tọa độ giao điểm
b) Hai đường thẳng song có cùng vecto chỉ phương ( hoặc pháp tuyến)
d) Sử dụng đinh nghĩa hàm số tang
a) Xét hệ phương trình: \(\left\{ \begin{array}{l}y = 0\\y = ax + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = \frac{{ - b}}{a}\end{array} \right.\) . Vậy đường thẳng \(\Delta \) cắt trục hoành tại điểm \(\left( {\frac{{ - b}}{a};0} \right)\).
b) Phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \) là \(y = a\left( {x - 0} \right) + 0 = {\rm{a}}x\).
c) Ta có: \({\alpha _\Delta } = {\alpha _{{\Delta _o}}}\).
d) Từ câu b) và điều kiện \(x_o^2 + y_o^2 = 1\) trong đó \({y_o}\) là tung độ của điểm M, ta suy ra \({x_o} \ne 0\). Do đó: \(\tan {\alpha _\Delta } = \tan {\alpha _{{\Delta _o}}} = \frac{{{y_o}}}{{{x_o}}} = a\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK