a) Vẽ tam giác đều ABC. Hãy trình bày cách xác định tâm của đường tròn ngoại tiếp tam giác ABC và vẽ đường tròn đó.
b) Giải thích vì sao tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó (H.9.17).
c) Giải thích vì sao \(\widehat {OBM} = {30^o}\) và \(OB = \frac{{\sqrt 3 }}{3}BC\) (với M là trung điểm của BC).
a) Kẻ ba đường trung trực của các cạnh AB, AC, BC. Gọi O là giao điểm của ba đường trung trực đó thì O là tâm của đường tròn ngoại tiếp tam giác ABC.
b) + Trong tam giác đều, giao điểm của ba đường trung trực đồng thời là trọng tâm của tam giác đó.
+ Suy ra, tâm O đường tròn ngoại tiếp trùng với trọng tâm của tam giác đó.
c) Gọi E là giao điểm của BO và AC.
+ Chứng minh BE là đường phân giác và trung tuyến của tam giác đều ABC.
Do đó, \(OB = \frac{2}{3}BE\), \(\widehat {OBM} = {30^o}\)
+ Áp dụng định lý Pythagore vào tam giác BEC để tính BE, từ đó tính OB.
a) Kẻ ba đường trung trực của các cạnh AB, AC, BC. Gọi O là giao điểm của ba đường trung trực đó thì O là tâm của đường tròn ngoại tiếp tam giác ABC.
b) Vì tam giác ABC đều nên O vừa là giao điểm của ba đường trung trực trong tam giác, vừa là trọng tâm của tam giác. Do đó, tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó.
c) Tam giác ABC đều nên \(BC = AC,\widehat {ABC} = {60^o}\)
Gọi E là giao điểm của BO và AC. Khi đó, BE là đường trung trực của tam giác ABC.
Vì tam giác ABC đều nên BE là đường trung trực, đường trung tuyến và đường phân giác của tam giác.
Do đó, \(OB = \frac{2}{3}BE\) và \(\widehat {OBM} = \frac{1}{2}\widehat {ABC} = \frac{1}{2}{.60^o} = {30^o}\).
Vì E là trung điểm của AC nên \(EC = \frac{{AC}}{2} = \frac{{BC}}{2}\).
Tam giác BEC vuông tại E nên theo định lý Pythagore ta có:
\(B{E^2} + E{C^2} = B{C^2}\)
\(BE = \sqrt {B{C^2} - E{C^2}} = \sqrt {B{C^2} - {{\left( {\frac{{BC}}{2}} \right)}^2}} = \frac{{BC\sqrt 3 }}{2}\)
\(OB = \frac{2}{3}.\frac{{BC\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{3}BC\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK