Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp Bài tập 9.27 trang 89 Toán 9 tập 2 - Kết nối tri thức: Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P...

Bài tập 9.27 trang 89 Toán 9 tập 2 - Kết nối tri thức: Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P...

Chứng minh tam giác ABD đều nên \(BD = AB = AD\). + Chứng minh \(MB = BN = PD = DQ = MQ. Phân tích và giải Giải bài tập 9.27 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức - Bài 30. Đa giác đều . Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P,

Đề bài :

Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.

Hướng dẫn giải :

+ Chứng minh tam giác ABD đều nên \(BD = AB = AD\).

+ Chứng minh \(MB = BN = PD = DQ = MQ = NP = \frac{{AB}}{2}\).

+ Chứng minh \(\widehat B = \widehat {BNP} = \widehat {NPD} = \widehat D = \widehat {DQM} = \widehat {QMB} = {120^o}\)

+ Suy ra MBNPDQ là lục giác đều.

Lời giải chi tiết :

image

Vì ABCD là hình thoi nên \(AB = BC = CD = AD\).

Vì M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên \(MB = BN = NC = PC = PD = DQ = \frac{{AB}}{2}\) (1)

Tam giác ABD có: \(AB = AD\) nên tam giác ABD là tam giác cân tại A, mà \(\widehat A = {60^o}\) nên tam giác ABD đều. Do đó, \(AB = BD\).

Vì M, Q lần lượt là trung điểm của AB và AD (gt) nên MQ là đường trung bình của tam giác ABD. Do đó, \(MQ = \frac{1}{2}BD = \frac{1}{2}AB\) (2).

Vì N, P lần lượt là trung điểm của BC và CD (gt) nên NP là đường trung bình của tam giác CBD. Do đó, \(NP = \frac{1}{2}BD = \frac{1}{2}AB\) (3)

Từ (1), (2) và (3) ta có: \(MB = BN = PD = DQ = MQ = NP\) (*)

Vì ABCD là hình thoi nên \(\widehat {ABC} = \widehat {ADC};\widehat C = \widehat A = {60^o}\)

Ta có:

\(\widehat {ABC} + \widehat {ADC} + \widehat C + \widehat A = {360^o} \Rightarrow \widehat {ABC} = \widehat {ADC} = {360^o} - {2.60^o} = {120^o}\)

Tam giác NPC có: \(NC = PC\) nên tam giác NPC cân tại C. Mà \(\widehat C = {60^o}\) nên tam giác NPC đều.

Do đó, \(\widehat {CNP} = {60^o}\)

Ta có: \(\widehat {BNP} + \widehat {PNC} = {180^o}\) (hai góc kề bù) nên \(\widehat {BNP} = {120^o}\)

Chứng minh tương tự ta có:

\(\widehat {NPD} = \widehat {DQM} = \widehat {QMB} = {120^o}\)

Do đó: \(\widehat {ABC} = \widehat {ADC} = \widehat {BNP} = \widehat {NPD} = \widehat {DQM} = \widehat {QMB} = {120^o}\) (**)

Từ (*) và (**) ta có: MBNPDQ là lục giác đều.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK