Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Chương 4. Hệ thức lượng trong tam giác vuông Giải mục 1 trang 67, 68, 69 Toán 9 Kết nối tri thức tập 1: Xét góc C của tam giác ABC vuông tại A (H. 4. 3)...

Giải mục 1 trang 67, 68, 69 Toán 9 Kết nối tri thức tập 1: Xét góc C của tam giác ABC vuông tại A (H. 4. 3)...

Gợi ý giải CH, HĐ1, LT1, HĐ2, HĐ3, LT2 mục 1 trang 67, 68, 69 SGK Toán 9 tập 1 - Kết nối tri thức Bài 11. Tỉ số lượng giác của góc nhọn. Xét góc C của tam giác ABC vuông tại A (H. 4. 3) . Hãy chỉ ra cạnh đối và cạnh kề của góc C...

Câu hỏi:

Câu hỏi

Trả lời câu hỏi Câu hỏi trang 67

Xét góc C của tam giác ABC vuông tại A (H.4.3) . Hãy chỉ ra cạnh đối và cạnh kề của góc C.

image

Hướng dẫn giải :

Góc B tạo bởi hai cạnh là AB và BC trong đó cạnh BC là cạnh huyền và cạnh AB là cạnh kề, cạnh còn lại của tam giác là cạnh đối.

Lời giải chi tiết :

Góc C có cạnh đối là AB và cạnh kề của góc C là AC.


Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 67

Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có \(\widehat B = \widehat {B’} = \alpha .\) Chứng minh rằng:

a) \(\Delta ABC\backsim \Delta A’B’C’;\)

b) \(\frac{{AC}}{{BC}} = \frac{{A’C’}}{{B’C’}};\frac{{AB}}{{BC}} = \frac{{A’B’}}{{B’C’}};\frac{{AC}}{{AB}} = \frac{{A’C’}}{{A’B’}};\frac{{AB}}{{AC}} = \frac{{A’B’}}{{A’C’}}\)

Hướng dẫn giải :

Chứng minh tam giác đồng dạng theo trường hợp góc – góc (tam giác có hai cặp góc tương ứng bằng nhau) , sử dụng tính chất của tỉ lệ thức để chứng minh ý b (\(\frac{a}{b} = \frac{c}{d}\) suy ra \(\frac{a}{c} = \frac{b}{d}\) và \(\frac{b}{a} = \frac{d}{c}\) (tính chất tỉ lệ thức) ) .

Lời giải chi tiết :

image

a) Xét hai tam giác ABC và tam giác A’B’C’ ta có:

\(\begin{array}{l}\widehat A = \widehat {A’} = {90^0}\\\widehat B = \widehat {B’} = \alpha \end{array}\)

Nên \(\Delta ABC\backsim \Delta A’B’C’\left( g-g \right)\)

b) \(\Delta ABC\backsim \Delta A’B’C’\) suy ra \(\frac{{AB}}{{A’B’}} = \frac{{BC}}{{B’C’}} = \frac{{AC}}{{A’C’}}\) (tỉ lệ các cạnh tương ứng)

Do \(\frac{{AB}}{{A’B’}} = \frac{{BC}}{{B’C’}}\) nên ta có \(\frac{{AB}}{{BC}} = \frac{{A’B’}}{{B’C’}}\) (tính chất tỉ lệ thức)

Do \(\frac{{BC}}{{B’C’}} = \frac{{AC}}{{A’C’}}\) nên ta có \(\frac{{A’C’}}{{B’C’}} = \frac{{AC}}{{BC}}\) (tính chất tỉ lệ thức)

Do \(\frac{{AB}}{{A’B’}} = \frac{{AC}}{{A’C’}}\) nên ta có \(\frac{{AB}}{{AC}} = \frac{{A’B’}}{{A’C’}}\) và \(\frac{{AC}}{{AB}} = \frac{{A’B’}}{{A’C’}}\) (tính chất tỉ lệ thức)


Câu hỏi:

Luyện tập1

Trả lời câu hỏi Luyện tập 1 trang 68

Cho tam giác ABC vuông tại A có AB = 5 cm, AC = 12 cm. Hãy tính các tỉ số lượng giác của góc B.

Hướng dẫn giải :

Xét tam giác ABC vuông tại A, ta có:

image

Tỉ số giữa cạnh đối và cạnh huyền gọi là sin của góc B, kí hiệu \(\sin \widehat B\)

Tỉ số giữa cạnh kề và cạnh huyền gọi là cosin của góc B, kí hiệu \(\cos \widehat B\)

Tỉ số giữa cạnh đối và cạnh kề của góc B gọi là \(\tan \widehat B\)

Tỉ số giữa cạnh kề và cạnh đối của góc B gọi là \(\cot \widehat B\)

Ở bài toán này ta còn thiếu cạnh huyền BC, do đó cần sử dụng định Pythagore để tính.

Lời giải chi tiết :

image

Xét tam giác ABC vuông tại A, ta có \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Nên \(B{C^2} = {5^2} + {12^2} = 169\) suy ra \(BC = 13\) (cm) .

Theo định nghĩa của tỉ số lượng giác ta có:

\(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{{12}}{{13}};\\\cos \widehat B = \frac{{AB}}{{BC}} = \frac{5}{{13}};\\\tan \widehat B = \frac{{AC}}{{AB}} = \frac{{12}}{5};\\\cot \widehat B = \frac{{AB}}{{AC}} = \frac{5}{{12}}\)


Câu hỏi:

Hoạt động2

Trả lời câu hỏi Hoạt động 2 trang 69

Cho tam giác ABC vuông cân tại A và \(AB = AC = a\) (H.4.7a).

image

a) Hãy tính BC và các tỉ số \(\frac{{AB}}{{BC}}\) và \(\frac{{AC}}{{BC}}.\) Từ đó suy ra \(\sin {45^0};\cos {45^0}.\)

b) Hãy tính các tỉ số \(\frac{{AB}}{{AC}}\) và \(\frac{{AC}}{{AB}}.\) Từ đó suy ra \(\tan {45^0};\cot {45^0}.\)

Hướng dẫn giải :

Tính BC theo định lý Pythagore ta có: \(B{C^2} = A{B^2} + A{C^2}\)

Để tính các tỉ số ta thay các độ đo tương ứng của các cạnh.

Lời giải chi tiết :

Tam giác ABC vuông tại A, ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Nên \(B{C^2} = {a^2} + {a^2} = 2{a^2}\) suy ra \(BC = a\sqrt 2 \)

a) Tỉ số \(\frac{{AB}}{{BC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\) và \(\frac{{AC}}{{BC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\).

Do đó \(\sin {45^0} = \sin \widehat B = \frac{{AC}}{{BC}} = \frac{{\sqrt 2 }}{2};\) \(\cos {45^0} = \cos \widehat B = \frac{{AB}}{{BC}} = \frac{{\sqrt 2 }}{2}.\)

b) Tỉ số \(\frac{{AB}}{{AC}} = \frac{a}{a} = 1;\) \(\frac{{AC}}{{AB}} = \frac{a}{a} = 1\)

Do đó \(\tan {45^0} = \tan \widehat B = \frac{{AC}}{{AB}} = 1;\) \(\cot {45^0} = \cot \widehat B = \frac{{AB}}{{AC}} = 1\)


Câu hỏi:

Hoạt động3

Trả lời câu hỏi Hoạt động 3 trang 69

Xét tam giác đều ABC có cạnh bằng 2a.

image

a) Tính đường cao AH của tam giác ABC (H.4.7b) .

b) Tính \(\sin {30^0};\cos {30^0};\sin {60^0};\cos {60^0}.\)

c) Tính \(\tan {30^0};\cot {30^0};\tan {60^0};\cot {60^0}.\)

Hướng dẫn giải :

Chú ý trong tam giác đều, đường cao vừa là đường phân giác vừa là đường trung tuyến. Từ đó ta tính được cạnh AH và các tỉ số lượng giác liên quan.

Lời giải chi tiết :

a) Tam giác ABC đều có đường cao AH nên AH cũng là đường trung tuyến của tam giác. Do đó ta có H là trung điểm của BC nên \(BH = HC = \frac{{BC}}{2} = \frac{{2a}}{2} = a\)

Xét tam giác ABH vuông tại H, ta có: \(A{B^2} = A{H^2} + H{B^2}\) (Đjnh lý Pythagore)

Suy ra \({\left( {2a} \right)^2} = A{H^2} + {a^2}\) nên \(A{H^2} = 3a\) hay \(AH = a\sqrt 3 \)

b) Tam giác ABC đều nên \(\widehat A = \widehat B = \widehat C = {60^0}\)

Nên \(\cos {60^0} = \cos \widehat B = \frac{{BH}}{{AB}} = \frac{a}{{2a}} = \frac{1}{2};\) \(\sin {60^0} = \sin \widehat B = \frac{{AH}}{{AB}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2}\)

Tam giác ABC đều nên AH vừa là đường cao vừa là đường phân giác của góc A, do đó \(\widehat {BAH} = \widehat {CAH} = \frac{{\widehat {BAC}}}{2} = \frac{{{{60}^0}}}{2} = {30^0}\)

\(\sin {30^0} = \sin \widehat {BAH} = \frac{{BH}}{{AB}} = \frac{a}{{2a}} = \frac{1}{2};\) \(\cos {30^0} = \cos \widehat {BAH} = \frac{{AH}}{{AB}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2}\)

c) \(\tan {30^0} = \tan \widehat {BAH} = \frac{{BH}}{{AH}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)

\(\cot {30^0} = \cot \widehat {BAH} = \frac{{AH}}{{BH}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)

\(\tan {60^0} = \tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)

\(\cot {60^0} = \tan \widehat {ABH} = \frac{{BH}}{{AH}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)


Câu hỏi:

Luyện tập2

Trả lời câu hỏi Luyện tập 2 trang 70

Cho tam giác ABC vuông tại A có \(\widehat C = {45^0}\) và \(AB = c.\) Tính BC và AC theo c.

Hướng dẫn giải :

Từ công thức lượng giác liên quan đến góc C, ta tính được các cạnh còn lại theo AB.

Tỉ số giữa cạnh đối và cạnh huyền gọi là sin của góc C, kí hiệu \(\sin \widehat C\)

Tỉ số giữa cạnh đối và cạnh kề của góc C gọi là \(\tan \widehat C\)

Lời giải chi tiết :

image

Ta có: \(\tan \widehat C = \frac{{AB}}{{AC}}\) suy ra \(\tan {45^0} = \frac{c}{{AC}}\) do đó \(1 = \frac{c}{{AC}}\) hay \(AC = c\)

\(\sin \widehat C = \frac{{AB}}{{BC}}\) suy ra \(\sin {45^0} = \frac{c}{{BC}}\) do đó \(\frac{{\sqrt 2 }}{2} = \frac{c}{{BC}}\) hay \(BC = \frac{{2c}}{{\sqrt 2 }} = \sqrt 2 c\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK