Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Chương II. Hằng đẳng thức đáng nhớ và ứng dụng Câu hỏi trắc nghiệm trang 37 vở thực hành Toán 8: Đa thức \({x^2} - 3xy + 2{y^2}\) được phân tích thành tích của hai đa thức: A...

Câu hỏi trắc nghiệm trang 37 vở thực hành Toán 8: Đa thức \({x^2} - 3xy + 2{y^2}\) được phân tích thành tích của hai đa thức: A...

Phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử. Lời Giải Câu 1 trang 37, 2 trang 37, 3 trang 37, 4 trang 37 - câu hỏi trắc nghiệm trang 37 vở thực hành Toán 8 - Bài 9. Phân tích đa thức thành nhân tử. Chọn phương án đúng trong mỗi câu sau...

Câu hỏi:

Câu 1 trang 37

Đa thức \({x^2} - 3xy + 2{y^2}\) được phân tích thành tích của hai đa thức:

A. x + 2y và x – y.

B. x – 2y và x + y.

C. x + 2y và x + y.

D. x – 2y và x – y.

Hướng dẫn giải :

Phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử.

Lời giải chi tiết :

Ta có

\(\begin{array}{l}{x^2} - 3xy + 2{y^2}\\ = {x^2} - 2xy - xy + 2{y^2}\\ = \left( {{x^2} - 2xy} \right) - \left( {xy - 2{y^2}} \right)\\ = x\left( {x - 2y} \right) - y\left( {x - 2y} \right)\end{array}\)

\( = (x - y)(x - 2y).\)

=> Chọn đáp án D.


Câu hỏi:

Câu 2 trang 37

Đa thức \({x^3} + 8{y^3} + x + 2y\) được phân tích thành tích của hai đa thức:

A. \(x + 2y\) và \({x^2} + 2xy + 4{y^2} + 1\).

B. \(x + 2y\) và \({x^2} - 2xy + 4{y^2} + 1\).

C. \(x-2y\) và \({x^2} - 2xy + 4{y^2} + 1\).

D. \(x-2y\) và \({x^2} + 2xy + 4{y^2} + 1\).

Hướng dẫn giải :

Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức tổng của hai lập phương \({a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\) sau đó đặt nhân tử chung.

Lời giải chi tiết :

Ta có \({x^3} + 8{y^3} + x + 2y = \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + \left( {x + 2y} \right)\)

\( = \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2} + 1} \right).\)

=> Chọn đáp án B.


Câu hỏi:

Câu 3 trang 37

Đa thức \({x^2} + 5x + 6\) được phân tích thành tích của hai đa thức:

A. x + 2 và x – 3.

B. x – 2 và x – 3.

C. x + 2 và x + 3.

D. x – 2 và x + 3.

Hướng dẫn giải :

Phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử.

Lời giải chi tiết :

Ta có

\(\begin{array}{l}{x^2} + 5x + 6\\ = {x^2} + 2x + 3x + 6\\ = \left( {{x^2} + 2x} \right) + \left( {3x + 6} \right)\end{array}\)

\(\begin{array}{l} = x(x + 2) + 3(x + 2)\\ = (x + 3)(x + 2).\end{array}\)

=> Chọn đáp án C.


Câu hỏi:

Câu 4 trang 37

Đa thức \({x^2} - {y^2} + 4x - 4y\) được phân tích thành tích của hai đa thức:

A. x – y và x + y + 4.

B. x + y và x – y + 4.

C. x – y và x – y – 4.

D. x + y và x + y + 4.

Hướng dẫn giải :

Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức hiệu hai bình phương \({a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\) sau đó đặt nhân tử chung.

Lời giải chi tiết :

Ta có \({x^2} - {y^2} + 4x - 4y = \left( {x - y} \right)\left( {x + y} \right) + 4\left( {x - y} \right)\)

\( = (x - y)(x + y + 4).\)

=> Chọn đáp án A.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK