Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Chương 9. Tam giác đồng dạng Bài 9.10 trang 52 SBT Toán 8 - Kết nối tri thức với cuộc sống: Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M...

Bài 9.10 trang 52 SBT Toán 8 - Kết nối tri thức với cuộc sống: Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M...

* Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ. Hướng dẫn giải bài 9.10 trang 52 sách bài tập toán 8 - Kết nối tri thức với cuộc sống - Bài 33. Hai tam giác đồng dạng. Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M....

Đề bài :

Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M. Biết \(\widehat {ABC} = \widehat {MNP}\) và \(BC = 2NP\). Chứng minh $\Delta ABC\backsim \Delta MNP$ và tìm tỉ số đồng dạng.

Hướng dẫn giải :

* Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ: Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A’B’C’\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}} = k\) được gọi là tỉ số đồng dạng.

* Sử dụng kiến thức định lí (một trường hợp đặc biệt của hai tam giác đồng dạng) để chứng minh hai tam giác đồng dạng: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

Lời giải chi tiết :

image

Gọi E, F lần lượt là trung điểm của AB, AC.

Khi đó, EF là đường trung bình của tam giác ABC. Suy ra: EF//BC. Do đó, $\Delta AEF\backsim \Delta ABC$

Lại có: \(\frac{{AE}}{{AB}} = \frac{1}{2}\) nên $\Delta ABC\backsim \Delta MNP$ đồng dạng với tỉ số 2 (1)

Vì EF//BC nên \(\widehat {ABC} = \widehat {AEF\,},\widehat {ACB} = \widehat {AFE}\) (hai góc đồng vị)

Mà tam giác ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\).

Do đó, \(\widehat {ABC} = \widehat {AEF\,} = \widehat {ACB} = \widehat {AFE}\)

Tam giác MNP cân tại M nên \(\widehat {MNP} = \widehat {NPM}\)

Lại có: \(\widehat {ABC} = \widehat {MNP}\) (gt)

Do đó, \(\widehat {AFE} = \widehat {AEF} = \widehat {MNP} = \widehat {NPM}\)

Tam giác AEF và tam giác MNP có:

\(\widehat {AFE} = \widehat {AEF} = \widehat {MNP} = \widehat {NPM},FE = NP\left( { = \frac{{BC}}{2}} \right)\)

Do đó, \(\Delta AEF = \Delta MNP\left( {g.c.g} \right)\) (2)

Từ (1) và (2) ta có: $\Delta ABC\backsim \Delta MNP$ với tỉ số 2

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK